scholarly journals Heat transfer enhancement in superheated hydrocarbon fluids due to traces of water

2021 ◽  
Vol 2039 (1) ◽  
pp. 012015
Author(s):  
K V Lukianov ◽  
A N Kotov ◽  
A A Starostin

Abstract For the specific mode of pulse heating of a wire probe immersed in a test liquid (saturated hydrocarbon), the effect of enhancement of the heat transfer through the probe surface has been revealed. The characteristic heating time is from 10 to 20 ms. The objects of research are n-hexane, n-decane, and n-hexadecane. It is shown that the addition of 0.003% water increases the heat transfer to 10% in the course of approaching the boiling-up temperature of liquid. Simulation of the experimental conditions shows the possibility of microconvection in the most heated boundary layer of a liquid about 10 μm thick.

2015 ◽  
Vol 93 (7) ◽  
pp. 725-733 ◽  
Author(s):  
M. Ghalambaz ◽  
E. Izadpanahi ◽  
A. Noghrehabadi ◽  
A. Chamkha

The boundary layer heat and mass transfer of nanofluids over an isothermal stretching sheet is analyzed using a drift-flux model. The relative slip velocity between the nanoparticles and the base fluid is taken into account. The nanoparticles’ volume fractions at the surface of the sheet are considered to be adjusted passively. The thermal conductivity and the dynamic viscosity of the nanofluid are considered as functions of the local volume fraction of the nanoparticles. A non-dimensional parameter, heat transfer enhancement ratio, is introduced, which shows the alteration of the thermal convective coefficient of the nanofluid compared to the base fluid. The governing partial differential equations are reduced into a set of nonlinear ordinary differential equations using appropriate similarity transformations and then solved numerically using the fourth-order Runge–Kutta and Newton–Raphson methods along with the shooting technique. The effects of six non-dimensional parameters, namely, the Prandtl number of the base fluid Prbf, Lewis number Le, Brownian motion parameter Nb, thermophoresis parameter Nt, variable thermal conductivity parameter Nc and the variable viscosity parameter Nv, on the velocity, temperature, and concentration profiles as well as the reduced Nusselt number and the enhancement ratio are investigated. Finally, case studies for Al2O3 and Cu nanoparticles dispersed in water are performed. It is found that increases in the ambient values of the nanoparticles volume fraction cause decreases in both the dimensionless shear stress f″(0) and the reduced Nusselt number Nur. Furthermore, an augmentation of the ambient value of the volume fraction of nanoparticles results in an increase the heat transfer enhancement ratio hnf/hbf. Therefore, using nanoparticles produces heat transfer enhancement from the sheet.


Author(s):  
Junxiang Shi ◽  
Steven R. Schafer ◽  
Chung-Lung (C. L. ) Chen

A passive, self-agitating method which takes advantage of vortex-induced vibration (VIV) is presented to disrupt the thermal boundary layer and thereby enhance the convective heat transfer performance of a channel. A flexible cylinder is placed at centerline of a channel. The vortex shedding due to the presence of the cylinder generates a periodic lift force and the consequent vibration of the cylinder. The fluid-structure-interaction (FSI) due to the vibration strengthens the disruption of the thermal boundary layer by reinforcing vortex interaction with the walls, and improves the mixing process. This novel concept is demonstrated by a three-dimensional modeling study in different channels. The fluid dynamics and thermal performance are discussed in terms of the vortex dynamics, disruption of the thermal boundary layer, local and average Nusselt numbers (Nu), and pressure loss. At different conditions (Reynolds numbers, channel geometries, material properties), the channel with the VIV is seen to significantly increase the convective heat transfer coefficient. When the Reynolds number is 168, the channel with the VIV improves the average Nu by 234.8% and 51.4% in comparison with a clean channel and a channel with a stationary cylinder, respectively. The cylinder with the natural frequency close to the vortex shedding frequency is proved to have the maximum heat transfer enhancement. When the natural frequency is different from the vortex shedding frequency, the lower natural frequency shows a higher heat transfer rate and lower pressure loss than the larger one.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
L. Momayez ◽  
G. Delacourt ◽  
P. Dupont ◽  
H. Peerhossaini

Experimental measurements of flow and heat transfer in a concave surface boundary layer in the presence of streamwise counter-rotating Görtler vortices show conclusively that local surface heat-transfer rates can exceed that of the turbulent flat-plate boundary layer even in the absence of turbulence. We have observed unexpected heat-transfer behavior in a laminar boundary layer on a concave wall even at low nominal velocity, a configuration not studied in the literature: The heat-transfer enhancement is extremely high, well above that corresponding to a turbulent boundary layer on a flat plate. To quantify the effect of freestream velocity on heat-transfer intensification, two criteria are defined for the growth of the Görtler instability: Pz for primary instability and Prms for the secondary instability. The evolution of these criteria along the concave surface boundary layer clearly shows that the secondary instability grows faster than the primary instability. Measurements show that beyond a certain distance the heat-transfer enhancement is basically correlated with Prms, so that the high heat-transfer intensification at low freestream velocities is due to the high growth rate of the secondary instability. The relative heat-transfer enhancement seems to be independent of the nominal velocity (global Reynolds number) and allows predicting the influence of the Görtler instabilities in a large variety of situations.


Sign in / Sign up

Export Citation Format

Share Document