heating time
Recently Published Documents


TOTAL DOCUMENTS

918
(FIVE YEARS 290)

H-INDEX

36
(FIVE YEARS 7)

2022 ◽  
Vol 55 (2) ◽  
Author(s):  
Johannes Mirwald ◽  
Drilon Nura ◽  
Bernhard Hofko

AbstractThe application of chemical analysis on bituminous materials has increased drastically over the past decades. One of the most common spectroscopic methods used in the field of research is Attenuated Total Reflection (ATR) Fourier Transform Infrared (FTIR) spectroscopy. Since ATR-FTIR is a surface sensitive method, sample or specimen handling of a complex material like bitumen prior to its analysis needs to be considered, especially for people new to the field or analysis technique. This study looks at the impact of heating time and temperature as well as storage time and conditions on the oxidation of the bituminous specimen. Four binders from the same crude oil source but different specification classes (unmodified and styrene–butadiene–styrene polymer modified) and two binders from different crude oil sources were investigated. The results show that heating small quantities of bitumen at 180 °C for up to 30 min has little impact on the formation of oxidized species, when proper thermal monitoring is conducted. Special cases where oxidation does occur are reported in detail. Furthermore, strong oxidation is induced by day light, when bitumen is stored behind glass with no UV radiation present, which can reach short-term ageing level within 1 h. Thus, heating bitumen at 180 °C for 5–10 min followed by storage in the dark, climatized room and measured within one hour after preparation is recommended. These results should act as recommendation for future specimen handling prior to FTIR spectroscopic analysis to ensure unbiased and comparable measurements.


2022 ◽  
Vol 327 ◽  
pp. 263-271
Author(s):  
Gan Li ◽  
Jin Kang Peng ◽  
En Jie Dong ◽  
Juan Chen ◽  
Hong Xing Lu ◽  
...  

There is a strong demand for high-strength aluminum alloys such as 7075 aluminum alloy to be applied for rheocasting industry. The overriding challenge for the application of 7075 alloy is that its solid fraction is very sensitive to the variation of temperature in the range of 40% ~ 50% solid fraction, which inevitably narrows down the processing window of slurry preparation for rheocasting process. Therefore, in this work, a novel method to prepare semi-solid slurry of the 7075 alloy, so called Enthalpy Control Process (ECP), has been developed to grapple with this issue. In the method, a medium-frequency electromagnetic field was applied on the outside of slurry preparation crucible to reduce the temperature difference throughout the slurry. The effect of processing parameters, including heating power, heating time, the initial temperature of crucible and melt weight, on the temperature field of the semi-solid slurry was investigated. The results exhibited that although the all the processing parameters had a great influence on the average temperature of the slurry, heating time was the main factor affecting the maximum temperature difference of the slurry. The optimum processing parameters during ECP were found to be heating power of 7.5 KW, the initial temperature of crucible of 30 °C ~ 200 °C and melt weight of 2 kg.


2022 ◽  
Vol 355 ◽  
pp. 01028
Author(s):  
Hongxin Jia ◽  
Jingfu Wang ◽  
Yasong Ma

Take plastic waste and dried sludge as raw materials, use pressure testing machine and high temperature hot pressing mold to test under different parameters. The effect of raw material ratio, low-temperature pyrolysis temperature, molding pressure and heating time on the physical properties of the molded fuel after low-temperature pyrolysis, such as relaxation density, fall strength, compressive strength and water permeability, are studied. Single factor tests show that the general range of mixed molding parameters is: mixture ratio (dry sludge: composite plastics) 85:15~75:25, temperature 150~250°C, heating time 20~40min, compaction pressure 2~6MPa. Orthogonal test is designed on the basis of single factor test. The results show that the most important factor affecting the relaxation density of molding fuel is molding pressure, the most important factor affecting compressive strength is the ratio of raw materials, and the most important factor affecting water permeability is heating time. The fall strength is less affected by various factors. It is due to the stickiness of the molded plastic after softening, which strengthens the “cohesion” between the raw materials, and will not be explored in the orthogonal experiment. The optimal combination of relaxation density molding parameters is the ratio (dry sludge: composite plastics) 80:20, temperature 250°C, heating time 30min, compaction pressure 6MPa; the optimal combination of compressive strength molding parameters is 75:25, 250°C, 30min, 6MPa; the optimal combination of anti-moisture absorption performance molding parameters is 85:15, 150°C, 30min, 2MPa.


2021 ◽  

Thermal propagation test of lithium-ion battery is an important method to verify the safety of battery system, and how to effectively trigger the thermal runaway of a cell and minimize the energy introduced into the system become the key of test method design. In this work, the influence of different heating area and different heating power on thermal runaway of prismatic cells and pouch cells is studied. The results show that when the heating area is fixed, the heating power increases, the heating time required to trigger the thermal runaway of the cells becomes shorter. The energy needed to be introduced becomes smaller, but there will be a minimum value of the introduced energy. On the other hand, the thermal runaway results of prismatic cells are more sensitive to the change of heating area, and the thermal runaway results of pouch cells are more sensitive to heating power.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 154
Author(s):  
Qiangu Yan ◽  
Timothy Ketelboeter ◽  
Zhiyong Cai

In this work, few-layer graphene materials were produced from Fe-lignin nanocomposites through a molecular cracking and welding (MCW) method. MCW process is a low-cost, scalable technique to fabricate few-layer graphene materials. It involves preparing metal (M)-lignin nanocomposites from kraft lignin and a transition metal catalyst, pretreating the M-lignin composites, and forming of the graphene-encapsulated metal structures by catalytic graphitization the M-lignin composites. Then, these graphene-encapsulated metal structures are opened by the molecule cracking reagents. The graphene shells are peeled off the metal core and simultaneously welded and reconstructed to graphene materials under a selected welding reagent. The critical parameters, including heating temperature, heating time, and particle sizes of the Fe-lignin composites, have been explored to understand the graphene formation mechanism and to obtain the optimized process parameters to improve the yield and selectivity of graphene materials.


2021 ◽  
pp. 345-350
Author(s):  
Andrey Aleksandrovich Spitsyn ◽  
Mariya Igorevna Minich ◽  
Dmitriy Andreyevich Ponomarev ◽  
Nikolay Ivanovich Bogdanovich

The sorption capacity of activated carbon obtained from various plant precursors – apple wood, birch wood, pine cones and cellolignin was studied. The plant material was first subjected to carbonation by heating to a temperature of 700 °C and further exposure at this temperature. The total heating time was 8 hours. Charcoal was then subjected to steam activation at a reactor temperature of 950 °C and an activation time of 40–45 minutes. The yield of activated carbon estimated on charcoal was 42–46%. The characteristics of the porous structure were determined by the method of low-temperature nitrogen adsorption. The total specific surface area according to the BET method was (m2/g) 674, 594, 552, 552, 622 for apple wood, birch wood, pine cones, cellolignin and an industrial sample of activated carbon, respectively. Determination of the adsorption capacity by iodine adsorption methods showed that this value, depending on the source of raw materials, falls in the order: birch wood > cellolignin ≈ apple wood > pine cones. The data on the sorption of benzene characterize approximately the same range of sorption capacity: birch wood > cellolignin > pine cones ≈ apple wood. The data on the sorption capacity show that unconventional plant raw materials can be used to produce activated carbon.


2021 ◽  
Author(s):  
Chen Xie ◽  
Zhengpeng Qin

Abstract Nanoparticle (NP) are promising agents to absorb external energy excitation and generate heat. Cluster of NPs or NP array heating have found essential roles for biomedical applications, diagnostic techniques and chemical catalysis. Various studies have shed light on the heat transfer of nanostructures and greatly advanced our understanding of NP array heating. However, there is a lack of analytical tools and dimensionless parameters to describe the transient heating of NP arrays. Here we demonstrate a comprehensive analysis of the transient NP array heating. Firstly, we developed analytical solution for the NP array heating and provide a useful mathematical description of the spatial-temporal evolution of temperature for 2D, 3D and spherical NP array heating. Based on this, we proposed the idea of thermal resolution that quantifies the relationship between minimal heating time, NP array size, energy intensity and target temperature. Lastly, we define a dimensionless parameter that characterize the transition from confined heating to delocalized heating. This study advances the understanding of nanomaterials heating and provides guidance for rationally designing innovative approaches for NP array heating.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8317
Author(s):  
Qiang Cao ◽  
Jiaren Ye ◽  
Yongchao Lu ◽  
Yang Tian ◽  
Jinshui Liu ◽  
...  

Semi-open hydrous pyrolysis experiments on coal-measure source rocks in the Xihu Sag were conducted to investigate the carbon isotope evolution of kerogen, bitumen, generated expelled oil, and gases with increasing thermal maturity. Seven corresponding experiments were conducted at 335 °C, 360 °C, 400 °C, 455 °C, 480 °C, 525 °C, and 575 °C, while other experimental factors, such as the heating time and rate, lithostatic and hydrodynamic pressures, and columnar original samples were kept the same. The results show that the simulated temperatures were positive for the measured vitrinite reflectance (Ro), with a correlation coefficient (R2) of 0.9861. With increasing temperatures, lower maturity, maturity, higher maturity, and post-maturity stages occurred at simulated temperatures (Ts) of 335–360 °C, 360–400 °C, 400–480 °C, and 480–575 °C, respectively. The increasing gas hydrocarbons with increasing temperature reflected the higher gas potential. Moreover, the carbon isotopes of kerogen, bitumen, expelled oil, and gases were associated with increased temperatures; among gases, methane was the most sensitive to maturity. Ignoring the intermediate reaction process, the thermal evolution process can be summarized as kerogen0(original) + bitumen0(original)→kerogenr (residual kerogen) + expelled oil (generated) + bitumenn+r (generated + residual) + C2+(generated + residual) + CH4(generated). Among these, bitumen, expelled oil, and C2-5 acted as reactants and products, whereas kerogen and methane were the reactants and products, respectively. Furthermore, the order of the carbon isotopes during the thermal evolution process was identified as: δ13C1 < 13C2-5 < δ13Cexpelled oil < δ13Cbitumen < δ13Ckerogen. Thus, the reaction and production mechanisms of carbon isotopes can be obtained based on their changing degree and yields in kerogen, bitumen, expelled oil, and gases. Furthermore, combining the analysis of the geochemical characteristics of the Pinghu Formation coal–oil-type gas in actual strata with these pyrolysis experiments, it was identified that this area also had substantial development potential. Therefore, this study provides theoretical support and guidance for the formation mechanism and exploration of oil and gas based on changing carbon isotopes.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7476
Author(s):  
Paweł Muszyński ◽  
Przemysław Poszwa ◽  
Krzysztof Mrozek ◽  
Michał Zielinski ◽  
Piotr Dalewski ◽  
...  

In order to increase the quality of the products manufactured by injection molding, RTC technology can be used to achieve higher mold temperatures. As a result, the path of the injected melt can be extended, allowing the production of parts with more complex shapes and greater length. Induction heating allows heating only selected forming surfaces of the mold which increases the speed and efficiency of the process. This paper presents the concept of a detachable inductor integrated with sliders to enable the application of this technology in an injection mold with sliders, along with the theoretical model used to perform the tests. First, the effect of the magnetic concentrator shape on the process was analyzed. This was followed by a simulation study of the influence of process parameters: heating time, frequency, and electric current. An extensive analysis of the test results of the temperature distribution on the insert allowed for the selection of parameter sets that would enable obtaining the desired surface temperature without a major increase in process time. The results of simulation studies confirm the possible applications and present the range of parameters for obtaining the optimal process.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1348
Author(s):  
Senlin Nan ◽  
Wentao Li ◽  
Weiming Guan ◽  
Huabin Liu ◽  
Hongchao Zhao ◽  
...  

Various geotechnical experiments have used gypsum-cemented analog geotechnical materials. However, this material needs a long curing time, and the target strength is not easy to control. Therefore, this research adopted microwave heating as the curing method for this kind of material. Objectively, the authors investigated the variations in the material strength versus heating power and heating time. On this basis, we clarified the influence mechanism of microwaves on the strength of analog materials by analyzing material temperature, moisture content, and microstructure, which eventually led to an experimental control method for rapid strengthening of microwave field-controlled gypsum-cemented analog materials. Consequently, we drew the following conclusions. The stable strength of the material under high-power microwave curing was much lower than that under natural curing, while the material strength under low-power microwave curing was the closest to the material under natural curing.


Sign in / Sign up

Export Citation Format

Share Document