scholarly journals Heat transfer enhancement during condensation of water steam on inclined pipe

2021 ◽  
Vol 2039 (1) ◽  
pp. 012031
Author(s):  
S Z Sapozhnikov ◽  
V Yu Mityakov ◽  
A V Mityakov ◽  
A Yu Babich ◽  
E R Zainullina

Abstract This paper presents experimental study of heat transfer during film condensation of saturated water steam on the outer surface of the inclined pipe by gradient heatmetry. Heat flux per unit area was measured by gradient heat flux sensors made of a single-crystal bismuth. The experimental results are presented in the graphs of heat flux per unit area dependence on time and azimuthal angle. The highest average heat transfer coefficient during condensation of α = 6.94 kW/(m2 • K) was observed when the pipe was inclined at the angle of ψ = 20 °. This value exceeds one obtained on a vertical pipe by 14.9 %. Heat transfer enhancement during condensation of saturated water steam on inclined pipe is associated with changes in condensate film flow. Another part of experiments was made by simultaneously using of gradient heatmetry and condensate flow visualization. Experimental results confirmed the applicability and high informative content of proposed comprehensive method. Comprehensive study of heat transfer during condensation confirmed that heat flux per unit area pulsations may be explained by the formation of individual drops, their coalescence, and drainage from the sensor surface.

Author(s):  
X. Y. Xu ◽  
T. Ma ◽  
M. Zeng ◽  
Q. W. Wang

Due to the dramatic changes in physical properties, the flow and heat transfer in supercritical fluid are significantly affected by buoyancy effects, especially when the ratio of inlet mass flux and wall heat flux is relatively small. In this study, the heat transfer of supercritical water in uniformly heated vertical tube is numerically investigated with different buoyancy models which are based on different calculation methods of the turbulent heat flux. The applicabilities of these buoyancy models are analyzed both in heat transfer enhancement and deterioration conditions. The simulation results show that these buoyancy models make few differences and give good wall temperature prediction in heat transfer enhancement condition when the ratio of inlet mass flux and wall heat flux is very small. With the increase of wall heat flux, the accuracy of wall temperature prediction reduces, and the differences between these buoyancy models become larger. No buoyancy model can currently make accurate wall temperature prediction in deterioration condition in this study.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Ahmad Nurye Oumer ◽  
Amer Farhan Alias

This research explains the investigation of fin spacing for heat transfer enhancement in the finned tube heat exchanger. The objective of this paper is to recommend the optimum fin spacing for heat transfer enhancement. Three different types of tube and spacing are identified through the simulation from Ansys software. The data between simulation using Ansys Fluent and published literature were being compared. Graph of total pressure, Nusselt number and total temperature have been plotted to make the comparison. Result obtained showed that were a bigger agreement between the simulation and published literature for both types of the tube which are circular and elliptic. From the analysis, there were considered two types of arrangement for the different types of tube. From that, the aligned arrangement is the best for heat transfer enhancement compared to the staggered. For the effect of spacing, there was three spacing which is 1.7 mm, 1.8 mm, and 2.0 mm spacing with velocity and the total heat flux is set to be constant (v =1.4 m/s; q = 500 W/m2). For the circular tube, it can be seen that the wider of the fin spacing gave the best heat transfer enhancement in the heat exchanger. Different from the circular which is 1.8 mm spacing is the best for heat transfer enhancement. Other types of tube are a flat surface which is comparing with the variations of Nu vs Re with different heat flux. Then, the result showed that as the Re is increased the Nu will also increase. In the other side, it is recommended for future work to do the real model dimension followed to import to the Ansys instead of assuming the model is symmetrical.


2019 ◽  
Author(s):  
◽  
Run Yan

As demand for the world's natural resources continues to rise, energy saving has become an urgent topic. Water harvesting and condensation heat transfer enhancement represent two vital energy-saving objectives. Many researchers have focused on alternating surface wettability by employing advanced materials or complex surface structures to achieve such goals; however, most of these approaches operate in a passive manner. In terms of active methods, electrowetting-on-dielectric (EWOD) has become a popular option owing to its excellent contact angle reversibility, switching speed, and long-term reliability in altering surface wettability. This dissertation presents a study of the EWOD effect on water harvesting and condensation heat transfer. It describes experimental and analytical studies concerning various characteristics such as EWOD-induced droplet dynamics, water capture capability, and heat transfer performance. It also quantifies water harvesting and condensation heat transfer enhancement. This dissertation is divided into four main studies, each of which considers different aspects of the effects of EWOD on water harvesting and condensation heat transfer. The first part of this dissertation (Chapter 2) describes microfabrication technologies to obtain EWOD devices, including low-pressure chemical vapor deposition, photolithography, sputtering deposition, and lift-off and spin coating. Mask designs with different electrode configurations and a device microfabrication protocol are also described. The second part of this dissertation (Chapter 3) presents an experimental investigation of EWOD-induced water harvesting enhancement. EWOD devices were tested in a high-humidity environment under mist flow. Compared with an uncharged EWOD device, the water capture capability of charged devices improved significantly. These results are of great importance, as they indicate strong potential for improvement in water-harvesting applications. The third part of this dissertation (Chapter 4) describes a visualization study of EWOD-regulated condensation droplet distribution. Side-by-side experiments were performed to compare charged and uncharged devices. Charged devices exhibited a regulated droplet distribution, faster droplet growth, more dispersed droplet distribution, and more large droplets. These experimental results introduced a novel approach to actively influence droplet distribution on microfabricated condensing surfaces and showed promise for improving the condensation heat transfer rate via EWOD. The fourth part of this dissertation (Chapter 5) discusses the EWOD effect on the condensation heat transfer coefficient and heat flux. The heat transfer coefficient and heat flux were compared on uncharged and charged (40V DC) EWOD devices. Experimental results demonstrated a positive effect of EWOD on condensation heat transfer. This approach could be incorporated into many industrial applications (e.g., heat exchanger fin surfaces, condensing surfaces of waste heat recovery systems, and components of electronic cooling packages) requiring high-efficiency heat dissipation. In summary, this work makes valuable contributions to the field of water harvesting and condensation heat transfer, proposing a new approach to research in these areas. Findings also detail a new tool to achieve water harvesting and condensation heat transfer enhancement via an active EWOD method.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012031
Author(s):  
P Kumavat ◽  
S M O’Shaughnessy

Abstract The increasing power density requirements of next generation high performance electronic devices has resulted in ever-increasing heat flux densities which necessitates the evolution of new liquid-based heat exchange technologies. Pulsating flow in single-phase cooling systems is viewed as a potential solution. In this study, an experimental analysis of thermally developed pulsating flow in a rectangular minichannel is conducted. The channel test setup involves a heated bottom section approximated as a constant heat flux boundary. Asymmetric sinusoidal pulsating flows with a fixed flow rate amplitude ratio of 0.9 and Womersley numbers (Wo) of 0.51 and 1.6 are investigated. The wall temperature profiles are recorded using infrared thermography. It is observed that the transverse wall temperature profile is influenced by the sudden velocity variations of such characteristic waveforms. A heat transfer enhancement of 6% was determined for asymmetric flow pulsations of Wo > 1 over the steady flow with a potential augmentation for higher flow rate amplitudes.


Sign in / Sign up

Export Citation Format

Share Document