scholarly journals A heap strategy for UAV deployment issues under mobile terrestrial wireless communication networks

2021 ◽  
Vol 2083 (2) ◽  
pp. 022039
Author(s):  
Yanlin Li

Abstract Unmanned on-board mobile base stations (MBSs) can more effectively solve wireless connectivity problems in terrestrial communication networks without fixed infrastructure. The purpose of this article is to minimize the number of MBS required to provide wireless coverage for a set of distributed ground terminals (GTs). Traditional clustering algorithms are no longer applicable because each drone has a different coverage area size and the traditional K-Means clustering algorithm has no limit on the number of heaps that can exceed the maximum coverage area of a single drone, making it impossible for a drone to provide services. In response to this problem, the traditional K-Means clustering algorithm is optimized, and the results of the optimized K-Means clustering algorithm are stacked to ensure that each pile has the corresponding drone capability to serve it.

2009 ◽  
Vol 9 (7) ◽  
pp. 2413-2418 ◽  
Author(s):  
N. David ◽  
P. Alpert ◽  
H. Messer

Abstract. We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition – many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements). The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences (RMSD) were 1.8 g/m3 and 3.4 g/m3 for the northern and central site measurements, respectively.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Lingjia Liu ◽  
Jianzhong (Charlie) Zhang ◽  
Jae-Chon Yu ◽  
Juho Lee

We consider the applications of multicell transmission schemes to the downlink of future wireless communication networks. A multicell multiple-input multiple output-(MIMOs) based scheme with limited coordination among neighboring base stations (BSs) is proposed to effectively combat the intercell interference by taking advantage of the degreesoffreedom in the spatial domain. In this scheme, mobile users are required to feedback channel-related information to both serving base station and interfering base station. Furthermore, a chordal distance-based compression scheme is introduced to reduce the feedback overhead. The performance of the proposed scheme is investigated through theoretical analysis as well as system level simulations. Both results suggest that the so-called “intercell interference coordination through limited feedback” scheme is a very good candidate for improving the cell-edge user throughput as well as the average cell throughput of the future wireless communication networks.


2008 ◽  
Vol 8 (3) ◽  
pp. 11673-11684 ◽  
Author(s):  
N. David ◽  
P. Alpert ◽  
H. Messer

Abstract. We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapor, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, the proposed method can provide moisture observations at high temporal and spatial resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition – many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show excellent correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements).The correlation of the microwave link measurements to those of the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The RMSE were 20.8% and 33.1% for the northern and central site measurements, respectively.


Sign in / Sign up

Export Citation Format

Share Document