interference coordination
Recently Published Documents


TOTAL DOCUMENTS

600
(FIVE YEARS 69)

H-INDEX

34
(FIVE YEARS 5)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chen Sun ◽  
Shiyi Wu ◽  
Bo Zhang

In future heterogeneous cellular networks with small cells, such as D2D and relay, interference coordination between macro cells and small cells should be addressed through effective resource allocation and power control. The two-step Stackelberg game is a widely used and feasible model for resource allocation and power control problem formulation. Both in the follower games for small cells and in the leader games for the macro cell, the cost parameters are a critical variable for the performance of Stackelberg game. Previous studies have failed to adequately address the optimization of cost parameters. This paper presents a reinforcement learning approach for effectively training cost parameters for better system performance. Furthermore, a two-stage pretraining plus ε -greedy algorithm is proposed to accelerate the convergence of reinforcement learning. The simulation results can demonstrate that compared with the three beachmarking algorithms, the proposed algorithm can enhance average throughput of all users and cellular users by up to 7% and 9.7%, respectively.


2021 ◽  
Vol 2 (2) ◽  
pp. 165-185
Author(s):  
Md Moin Uddin Chowdhury ◽  
Ismail Guvenc ◽  
Walid Saad ◽  
Arupjyoti Bhuyan

To integrate unmanned aerial vehicles (UAVs) in future large-scale deployments, a new wireless communication paradigm, namely, the cellular-connected UAV has recently attracted interest. However, the line-of-sight dominant air-to-ground channels along with the antenna pattern of the cellular ground base stations (GBSs) introduce critical interference issues in cellular-connected UAV communications. In particular, the complex antenna pattern and the ground reflection (GR) from the down-tilted antennas create both coverage holes and patchy coverage for the UAVs in the sky, which leads to unreliable connectivity from the underlying cellular network. To overcome these challenges, in this paper, we propose a new cellular architecture that employs an extra set of co-channel antennas oriented towards the sky to support UAVs on top of the existing down-tilted antennas for ground user equipment (GUE). To model the GR stemming from the down-tilted antennas, we propose a path-loss model, which takes both antenna radiation pattern and configuration into account. Next, we formulate an optimization problem to maximize the minimum signal-to-interference ratio (SIR) of the UAVs by tuning the up-tilt (UT) angles of the up-tilted antennas. Since this is an NP-hard problem, we propose a genetic algorithm (GA) based heuristic method to optimize the UT angles of these antennas. After obtaining the optimal UT angles, we integrate the 3GPP Release-10 specified enhanced inter-cell interference coordination (eICIC) to reduce the interference stemming from the down-tilted antennas. Our simulation results based on the hexagonal cell layout show that the proposed interference mitigation method can ensure higher minimum SIRs for the UAVs over baseline methods while creating minimal impact on the SIR of GUEs.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7899
Author(s):  
Iago Diógenes do Rego ◽  
Vicente A. de Sousa

This work explores interference coordination techniques (inter-cell interference coordination, ICIC) based on fractional frequency reuse (FFR) as a solution for a multi-cellular scenario with user concentration varying over time. Initially, we present the problem of high user concentration along with their consequences. Next, the use of multiple-input multiple-output (MIMO) and small cells are discussed as classic solutions to the problem, leading to the introduction of fractional frequency reuse and existing ICIC techniques that use FFR. An exploratory analysis is presented in order to demonstrate the effectiveness of ICIC techniques in reducing co-channel interference, as well as to compare different techniques. A statistical study was conducted using one of the techniques from the first analysis in order to identify which of its parameters are relevant to the system performance. Additionally, another study is presented to highlight the impact of high user concentration in the proposed scenario. Because of the dynamic aspect of the system, this work proposes a solution based on machine learning. It consists of changing the ICIC parameters automatically to maintain the best possible signal-to-interference-plus-noise ratio (SINR) in a scenario with hotspots appearing over time. All investigations are based on ns-3 simulator prototyping. The results show that the proposed Q-Learning algorithm increases the average SINR from all users and hotspot users when compared with a scenario without Q-Learning. The SINR from hotspot users is increased by 11.2% in the worst case scenario and by 180% in the best case.


2021 ◽  
Author(s):  
Lei Zhu ◽  
Kai Li ◽  
Yang Yang ◽  
Liantao Wu ◽  
Fanglei Sun ◽  
...  

Author(s):  
Mohammed I. Aal-nouman ◽  
Osamah Abdullah ◽  
Noor Qusay A. Al Shaikhli

With the remarkable impact and fast growth of the mobile networks, the mobile base stations have been increased too, especially in the high population areas. These base stations will be overloaded by users, for that reason the small cells (like pico cells) were introduced. However, the inter-cell interference will be high in this type of Heterogeneous networks. There are many solutions to mitigate this interference like the inter-cell interference coordination (ICIC), and then the further enhanced ICIC (Fe-ICIC) where the almost blank subframes are used to give priority to the (victim users). But it could be a waste of bandwidth due to the unused subframes. For that reason, in this paper, we proposed an adaptive reduced power subframe that reduces its power ratio according to the user’s signal-to-interference-plus-noise ratio (SINR) in order to get a better throughput and to mitigate the intercell interference. When the user is far from the cell, the case will be considered as an edge user and will get a higher priority to be served first. The results show that the throughput of all users in the macro cells and pico cell will be improved when applying the proposed scheme in term of throughput for the users and the cells.


Sign in / Sign up

Export Citation Format

Share Document