scholarly journals Intercell Interference Coordination through Limited Feedback

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Lingjia Liu ◽  
Jianzhong (Charlie) Zhang ◽  
Jae-Chon Yu ◽  
Juho Lee

We consider the applications of multicell transmission schemes to the downlink of future wireless communication networks. A multicell multiple-input multiple output-(MIMOs) based scheme with limited coordination among neighboring base stations (BSs) is proposed to effectively combat the intercell interference by taking advantage of the degreesoffreedom in the spatial domain. In this scheme, mobile users are required to feedback channel-related information to both serving base station and interfering base station. Furthermore, a chordal distance-based compression scheme is introduced to reduce the feedback overhead. The performance of the proposed scheme is investigated through theoretical analysis as well as system level simulations. Both results suggest that the so-called “intercell interference coordination through limited feedback” scheme is a very good candidate for improving the cell-edge user throughput as well as the average cell throughput of the future wireless communication networks.

2009 ◽  
Vol 9 (7) ◽  
pp. 2413-2418 ◽  
Author(s):  
N. David ◽  
P. Alpert ◽  
H. Messer

Abstract. We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition – many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements). The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences (RMSD) were 1.8 g/m3 and 3.4 g/m3 for the northern and central site measurements, respectively.


2008 ◽  
Vol 26 (8) ◽  
pp. 1337-1340 ◽  
Author(s):  
Robert Heath ◽  
David Love ◽  
Bhaskar Rao ◽  
Vincent Lau ◽  
David Gesbert ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hancheng Hui

In this paper, a deep learning approach is used to conduct an in-depth study and analysis of intelligent resource allocation in wireless communication networks. Firstly, the concepts related to CSCN architecture are discussed and the throughput of small base stations (SBS) in CSCN architecture is analyzed; then, the long short-term memory network (LSTM) model is used to predict the mobile location of users, and the transmission conditions of users are scored based on two conditions, namely, the mobile location of users and whether the small base stations to which users are connected have their desired cache states, and the small base stations select the transmission. The small base station selects several users with optimal transmission conditions based on the scores; then, the concept of game theory is introduced to model the problem of maximizing network throughput as a multi-intelligent noncooperative game problem; finally, a deep augmented learning-based wireless resource allocation algorithm is proposed to enable the small base station to learn autonomously and select channel resources based on the network environment to maximize the network throughput. Simulation results show that the algorithm proposed in this paper leads to a significant improvement in network throughput compared to the traditional random-access algorithm and the algorithm proposed in the literature. In this paper, we apply it to the fine-grained resource control problem of user traffic allocation and find that the resource control technique based on the AC framework can obtain a performance very close to the local optimal solution of a matching-based proportional fair user dual connection algorithm with polynomial-level computational complexity. The resource allocation and task unloading decision policy optimization is implemented, and at the end of the training process, each intelligent body independently performs resource allocation and task unloading according to the current system state and policy. Finally, the simulation results show that the algorithm can effectively improve the quality of user experience and reduce latency and energy consumption.


2008 ◽  
Vol 8 (3) ◽  
pp. 11673-11684 ◽  
Author(s):  
N. David ◽  
P. Alpert ◽  
H. Messer

Abstract. We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapor, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, the proposed method can provide moisture observations at high temporal and spatial resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition – many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show excellent correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements).The correlation of the microwave link measurements to those of the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The RMSE were 20.8% and 33.1% for the northern and central site measurements, respectively.


Sign in / Sign up

Export Citation Format

Share Document