scholarly journals Tuning the electronic and magnetic properties of defect blue phosphorene by the adsorption of nonmetal atoms

2021 ◽  
Vol 2083 (2) ◽  
pp. 022065
Author(s):  
Guo An ◽  
Guoxiang Chen ◽  
Xiaona Chen ◽  
Jianmin Zhang

Abstract Based on the first principles of density functional theory, the adsorption of nonmetallic atoms on the surface of defective blue phosphorene was investigated. The results show that the most stable sites of different nonmetallic atoms on the defect blue phosphorene are different. The nonmetal (B, C, N, O) atoms were adsorbed on SV and SW defects blue phosphorene respectively. It was observed that B, N adsorbed SV defect blue phosphorene systems exhibited semiconducting behavior, whereas O adsorbed SV defect blue phosphorene system exhibited metallic behavior, and C adsorbed SV defect blue phosphorene system exhibited magnetic semiconducting behavior. For SW defect blue phosphorene, the results show that B, N, adsorbed SW defect blue phosphorene showed magnetic semiconductor behavior, while C, O adsorbed SW defect blue phosphorene showed semiconductor behavior.

2014 ◽  
Vol 1015 ◽  
pp. 377-380
Author(s):  
Tao Chen ◽  
Ying Chen ◽  
Yin Zhou ◽  
Hong Chen

Using the first-principles calculations within density functional theory (DFT), we investigated the electronic and magnetic properties of (100) surface of inverse Heusler alloy Mn2CoSb with five different terminations. Our work reveals that the surface Mn atom moves to vacuum while surface Co atom moves to slab. Moreover, duo to the reason that the surface atom lost half of the nearest atoms with respect to the bulk phase, resulting in the decrease of hybridization, the atom-resolved spin magnetic moments of surface atoms are enhanced. Further investigation on DOS and PDOS showed that half-metallicity was preserved only in SbSb-termination while was destroyed in MnCo-, MnSb-, MnMn-, and CoCo-termination due to the appearance of surface states.


2019 ◽  
Vol 33 (5) ◽  
pp. 1507-1512 ◽  
Author(s):  
A. Azouaoui ◽  
M. El Haoua ◽  
S. Salmi ◽  
A. El Grini ◽  
N. Benzakour ◽  
...  

AbstractIn this paper, we have studied the structural, electronic, and magnetic properties of the cubic perovskite system Mn4N using the first principles calculations based on density functional theory (DFT) with the generalized gradient approximation (GGA). The obtained data from DFT calculations are used as input data in Monte Carlo simulation with a mixed spin-5/2 and 1 Ising model to calculate the magnetic properties of this compound, such as the total, partial thermal magnetization, and the critical temperatures (TC). The obtained results show that Mn4N has a ferrimagnetic structure with two different sites of Mn in the lattice and presents a metallic behavior. The obtained TC is in good agreement with experimental results.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 94
Author(s):  
Mailing Berwanger ◽  
Rajeev Ahuja ◽  
Paulo Cesar Piquini

First principles density functional theory was used to study the energetic, structural, and electronic properties of HfS 2 and TiS 2 materials in their bulk, pristine monolayer, as well as in the monolayer structure with the adsorbed C, N, and P atoms. It is shown that the HfS 2 monolayer remains a semiconductor while TiS 2 changes from semiconductor to metallic behavior after the atomic adsorption. The interaction with the external atoms introduces localized levels inside the band gap of the pristine monolayers, significantly altering their electronic properties, with important consequences on the practical use of these materials in real devices. These results emphasize the importance of considering the interaction of these 2D materials with common external atomic or molecular species.


2017 ◽  
Vol 19 (23) ◽  
pp. 15021-15029 ◽  
Author(s):  
Yusheng Wang ◽  
Nahong Song ◽  
Min Jia ◽  
Dapeng Yang ◽  
Chikowore Panashe ◽  
...  

First principles calculations based on density functional theory were carried out to study the electronic and magnetic properties of C2N nanoribbons (C2NNRs).


2017 ◽  
Vol 31 (03) ◽  
pp. 1750017 ◽  
Author(s):  
Yan-Ni Wen ◽  
Peng-Fei Gao ◽  
Xi Chen ◽  
Ming-Gang Xia ◽  
Yang Zhang ◽  
...  

First-principles study based on density functional theory has been employed to investigate width-dependent structural stability and magnetic properties of monolayer zigzag MoS2 nanoribbons (ZZ-MoS2 NRs). The width N = 4–6 (the numbers of zigzag Mo–S chains along the ribbon length) are considered. The results show that all studied ZZ-MoS2 NRs are less stable than two-dimensional MoS2 monolayer, exhibiting that a broader width ribbon behaves better structural stability and an inversely proportional relationship between the structural stability (or the ribbon with) and boundary S–Mo interaction. Electronic states imply that all ZZ-MoS2 NRs exhibit magnetic properties, regardless of their widths. Total magnetic moment increases with the increasing width N, which is mainly ascribed to the decreasing S–Mo interaction of the two zigzag edges. In order to confirm this reason, a uniaxial tension strain is applied to ZZ-MoS2 NRs. It has been found that, with the increasing tension strain, the bond length of boundary S–Mo increases, at the same time, the magnetic moment increases also. Our results suggest the rational applications of ZZ-MoS2 NRs in nanoelectronics and spintronics.


2018 ◽  
Vol 96 (1) ◽  
pp. 30-35
Author(s):  
Xiu-Juan Du ◽  
Zheng-Wei Zhang ◽  
Yu-Ling Song

Using first-principle calculations based on density functional theory, we investigate the strain and different edge terminations modulated electronic and magnetic properties of armchair AlN/SiC nanoribbons. The results show that the edge terminations Fe, Co, Cl can decrease or even eliminate the edge deformation of AlN/SiC nanoribbon. The magnetism of the nanoribbons is greatly adjusted by magnetic atoms Fe and Co, but not by Cl atoms. Apart from the nanoribbon with Cl terminations, the magnetism of the residual nanoribbons can be adjusted by increasing the compressed or stretched strain. The magnetic semiconductor nanoribbon with Co terminations becomes a magnetic half-metal system and then becomes a magnetic metal system, with the increase of the compressed strain. The magnetism of the nanoribbon with dangling bonds is attributed to the SiC edge and its nearest-neighbour C atoms, whereas the magnetism of the nanoribbon with Fe (or Co) terminations is mainly contributed by Fe (or Co) terminations.


RSC Advances ◽  
2016 ◽  
Vol 6 (74) ◽  
pp. 69758-69763 ◽  
Author(s):  
Xu Ma ◽  
Xu Zhao ◽  
Tianxing Wang

We investigate the electronic and magnetic properties of an Fe-doped single-layer WSe2 sheet with strain from −10% to 10% using first-principles methods based on density functional theory.


2021 ◽  
Author(s):  
Deepti Maikhuri ◽  
Jaiparkash Jaiparkash ◽  
Haider Abbas

Abstract We present a comprehensive first-principles study of the electronic structure of graphene sheet with periodic vacancy. We report the structural, electronic, and magnetic properties of the graphene sheet with periodic vacancy that possess 48 C & 28 H atoms. Computational analysis based on density functional theory predicts that the periodic vacancy can modulate the properties of graphene sheet. Results show that periodic vacancies lead to the manipulation of band gap & could be utilized to tailor the electronic properties of the sheet. Also, it is found that, the graphene sheet with periodic vacancy is non-magnetic in nature.


2017 ◽  
Vol 19 (42) ◽  
pp. 28928-28935 ◽  
Author(s):  
Ya Yang ◽  
Jihua Zhang ◽  
Shunbo Hu ◽  
Yabei Wu ◽  
Jincang Zhang ◽  
...  

First principles calculations based on density functional theory were performed to study the electronic structure and magnetic properties of β-Ga2O3 in the presence of cation vacancies.


Sign in / Sign up

Export Citation Format

Share Document