scholarly journals A one-dimensional modified TASEP model on a track of variable length: analytical and computational results

2021 ◽  
Vol 2090 (1) ◽  
pp. 012025
Author(s):  
B. Reed ◽  
E. Aldrich ◽  
L. Stoleriu ◽  
D.A. Mazilu ◽  
I. Mazilu

Abstract We present analytical solutions and Monte Carlo simulation results for a one-dimensional modified TASEP model inspired by the interplay between molecular motors and their cellular tracks of variable lengths, known as microtubules. Our TASEP model incorporates rules for changes in the length of the track based on the occupation of the first two sites. Using mean-field theory, we derive analytical results for the particle densities and particle currents and compare them with Monte Carlo simulations. These results show the limited range of mean-field methods for models with localized high correlation between particles. The variability in length adds to the complexity of the model, leading to emergent features for the evolution of particle densities and particle currents compared to the traditional TASEP model.

2021 ◽  
Vol 2090 (1) ◽  
pp. 012024
Author(s):  
E. Aldrich ◽  
B. Reed ◽  
L. Stoleriu ◽  
D.A. Mazilu ◽  
I. Mazilu

Abstract We present a traffic model inspired by the motion of molecular motors along microtubules, represented by particles moving along a one-dimensional track of variable length. As the particles move unidirectionally along the track, several processes can occur: particles already on the track can move to the next open site, additional particles can attach at unoccupied sites, or particles on the track can detach. We study the model using mean-field theory and Monte Carlo simulations, with a focus on the steady-state properties and the time evolution of the particle density and particle currents. For a specific range of parameters, the model captures the microtubule instability observed experimentally and reported in the literature. This model is versatile and can be modified to represent traffic in a variety of biological systems.


2014 ◽  
Vol 16 (26) ◽  
pp. 13383-13389 ◽  
Author(s):  
Xinru Li ◽  
Ying Dai ◽  
Yandong Ma ◽  
Baibiao Huang

The electronic and magnetic properties of d-electron-based Dirac systems are studied by combining first-principles with mean field theory and Monte Carlo approaches.


2021 ◽  
pp. 413627
Author(s):  
G. Dimitri Ngantso ◽  
M. Karimou ◽  
A.L. Okana-Lomanga ◽  
A. Kadiri ◽  
R.A. Yessoufou ◽  
...  

2019 ◽  
Vol 30 (08) ◽  
pp. 1950052
Author(s):  
Feng Hu ◽  
Jin-Li Guo ◽  
Fa-Xu Li ◽  
Hai-Xing Zhao

Hypernetworks are ubiquitous in real-world systems. They provide a powerful means of accurately depicting networks of different types of entity and will attract more attention from researchers in the future. Most previous hypernetwork research has been focused on the application and modeling of uniform hypernetworks, which are based on uniform hypergraphs. However, random hypernetworks are generally more common, therefore, it is useful to investigate the evolution mechanisms of random hypernetworks. In this paper, we construct three dynamic evolutional models of hypernetworks, namely the equal-probability random hypernetwork model, the Poisson-probability random hypernetwork model and the certain-probability random hypernetwork model. Furthermore, we analyze the hyperdegree distributions of the three models with mean-field theory, and we simulate each model numerically with different parameter values. The simulation results agree well with the results of our theoretical analysis, and the findings indicate that our models could help understand the structure and evolution mechanisms of real systems.


2010 ◽  
Vol 81 (4) ◽  
Author(s):  
Kosuke Nomura ◽  
Noritaka Shimizu ◽  
Takaharu Otsuka

Sign in / Sign up

Export Citation Format

Share Document