scholarly journals Modelling a mechanical antenna for a calibrator for interferometric gravitational wave detector using finite elements method

2021 ◽  
Vol 2090 (1) ◽  
pp. 012157
Author(s):  
A R C Prado ◽  
F S Bortoli ◽  
N. S. Magalhaes ◽  
R N Duarte ◽  
C Frajuca ◽  
...  

Abstract Interferometric gravitational wave detectors (IGWD) are a very complex detector, the need to lock the detector in a dark fringe condition besides the vibrations that affect the mirrors, creates the necessity of using active suspension systems. These active systems make the system reach the desired sensitivity but make the calibration of such detectors much more difficult. To solve this problem a calibrator is proposed, a resonant mass gravitational wave detector could be used to detect the same signal in a narrower band and use the measured amplitude to calibrate the IGWD, as resonant mass gravitational wave detectors are easily calibrated. This work aims to design the mechanical antenna of such a calibrator. The main difficulty is to design the calibrator is the frequencies required to make the detection. These massive detectors usually were made in frequencies close to 1 kHz and the frequency range to operate for better sensitivity is around 100 Hz. The antenna is modelled in finite elements method and a design of such an antenna is presented.

2021 ◽  
Vol 2090 (1) ◽  
pp. 012158
Author(s):  
A. R. C. Prado ◽  
F S Bortoli ◽  
N. S. Magalhaes ◽  
R N Duarte ◽  
C Frajuca ◽  
...  

Abstract Interferometric gravitational wave detectors (IGWD) are a very complex detector, the need to lock the detector in a dark fringe condition besides the vibrations that affect the mirrors, creates the necessity of using active suspension systems. These active systems make the system reach the desired sensitivity but make the calibration of such detectors much more difficult. To solve this problem a calibrator is proposed, a resonant mass gravitational wave detector could be used to detect the same signal in a narrower band and use the measured amplitude to calibrate the IGWD, as resonant mass gravitational wave detectors are easily calibrated. This work aims to obtain the expected sensitivity of such a calibrator by using lumped modelling in such mechanical detectors. The calibrator is modelled as a spring mass system and the sensitivity curve is presented calculated in by a matlab program. The curve shows that using state of art parameters for the detector the final sensitivity is close to the quantum limit and can be used to calibrate the IGWDs.


2006 ◽  
Vol 2 (14) ◽  
pp. 526-527
Author(s):  
Sheila Rowan

AbstractCurrently a network of interferometric gravitational wave detectors is in operation around the globe, in parallel with existing acoustic bar-type detectors. Searches are underway aimed at the first direct detection of gravitational radiation from astrophysical sources. This paper briefly summarizes the current status of operating gravitational wave facilities, plans for future detector upgrades, and the status of the planned space-based gravitational wave detector LISA.


2011 ◽  
Vol 20 (10) ◽  
pp. 2087-2092 ◽  
Author(s):  
L. JU ◽  
D. G. BLAIR ◽  
J. DAVIDSON ◽  
D. E. MCCLELLAND ◽  
J. MUNCH ◽  
...  

The AIGO project is the proposed southern hemisphere advanced large scale gravitational wave detector. With this southern hemisphere detector, the global array of ground based gravitational wave detectors will be substantially improved. Here we summarize the current plans for the AIGO detector.


2019 ◽  
pp. 33-38
Author(s):  
Nicholas Mee

The European Space Agency (ESA) has plans to build a space-based gravitational wave detector known as LISA. The recent LISA Pathfinder mission has demonstrated that the technology required for LISA will be sufficiently sensitive to detect gravitational waves. LISA will detect events that are invisible to LIGO and other Earth-based gravitational wave detectors. These include the mergers of distant supermassive black holes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  

AbstractIn this perspective, we outline that a space borne gravitational wave detector network combining LISA and Taiji can be used to measure the Hubble constant with an uncertainty less than 0.5% in ten years, compared with the network of the ground based gravitational wave detectors which can measure the Hubble constant within a 2% uncertainty in the next five years by the standard siren method. Taiji is a Chinese space borne gravitational wave detection mission planned for launch in the early 2030 s. The pilot satellite mission Taiji-1 has been launched in August 2019 to verify the feasibility of Taiji. The results of a few technologies tested on Taiji-1 are presented in this paper.


2004 ◽  
Vol 21 (5) ◽  
pp. S1107-S1111 ◽  
Author(s):  
Carlos Frajuca ◽  
Kilder L Ribeiro ◽  
Luiz A Andrade ◽  
Odylio D Aguiar ◽  
Nadja S Magalhães ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document