scholarly journals A discontinuous shapeless particle method for the quasi-linear transport

2021 ◽  
Vol 2099 (1) ◽  
pp. 012009
Author(s):  
S V Bogomolov ◽  
A E Kuvshinnikov

Abstract This paper considers a new version of the discontinuous particle method, whose higher accuracy is based on the “predictor-corrector” scheme. The peculiarity of this version is a new criterion of rearranging particles at the “corrector” stage. In contrast to the previously used version with the analysis of overlapping particles, which required an assumption about their form, we use another key characteristic of particles, namely, their mass, more precisely, the assumption that in the nonlinear elastic transport not only particle masses are conserved but also the mass located between the centers of these particles. This requirement leads to the fact that changing a distance between particles in the process of their movement and conservation of mass in the space between them, lead to a change in the density of one of the particles. A new version arose in the solution of the two-dimensional transport problems. We emphasize that the discontinuity is smeared into a single particle, which indicates to a high accuracy of the method. The construction of the method for a simple nonlinear transport problem is a necessary step to simulate the complex gas dynamics problems.

2021 ◽  
Vol 180 ◽  
pp. 58-65
Author(s):  
V.B. Betelin ◽  
B.V. Kryzhanovsky ◽  
N.N. Smirnov ◽  
V.F. Nikitin ◽  
I.M. Karandashev ◽  
...  

2018 ◽  
Vol 173 ◽  
pp. 03020 ◽  
Author(s):  
Igor Popov ◽  
Sergey Sukov

A modification of the adaptive artificial viscosity (AAV) method is considered. This modification is based on one stage time approximation and is adopted to calculation of gasdynamics problems on unstructured grids with an arbitrary type of grid elements. The proposed numerical method has simplified logic, better performance and parallel efficiency compared to the implementation of the original AAV method. Computer experiments evidence the robustness and convergence of the method to difference solution.


2019 ◽  
Vol 14 (2) ◽  
pp. 89-100
Author(s):  
M.R. Minibaev ◽  
C.I. Mikhaylenko

The applicability of various boundary conditions in the computational simulation of a Ranque–Hilsch vortex tube is investigated. A review of existing works on the effect of geometry and various thermodynamic parameters on the efficiency of the pipe is made. The substantiation of the possibility of introducing additional computational domains when moving the boundaries to study the influence of boundary conditions when modeling gas dynamics problems is given. To simulate the dynamics of a gas in a vortex tube, a mathematical model is written that includes the Navier–Stokes system of equations describing a compressible viscous fluid, which is closed by the equation of state of an ideal gas. Existing methods for calculating turbulent flows are considered. The applicability of various semi-empirical models of turbulence for modeling a vortex tube is described. The possibility of using the selected k−ε model and its description is argued. The boundary conditions characteristic of the vortex tube model are described, and the boundary conditions most combined in the simulation of gas dynamics problems are also shown. Presents a grid that takes into account the area formed by the removal of boundaries. The solution is based on the sonicFoam algorithm in the OpenFOAM package. Utilities of the postprocessor are used when preparing the model for calculations on a high-performance cluster and utilities for averaging the obtained physical quantities. The simulation results for different combinations of boundary conditions and models with remote boundaries are given. Comparison of the results obtained. It is shown that the geometrical dimensions have a strong influence on the operation of the pipe; the correct choice of boundary conditions makes it possible to obtain the values of physical quantities that are closest to the known experimental ones. Moving the boundaries away from direct exits provides an opportunity to more accurately estimate the effects that arise near the real boundaries of the vortex tube, especially affecting the magnitude of the Ranque–Hilsch effect.


2018 ◽  
Vol 6 (2) ◽  
pp. 94-99
Author(s):  
Ю. Брылкин ◽  
Yuriy Brylkin

This paper is devoted to the problem of modeling a rough surface to ensure calculations for a flow around aircraft by high-enthalpy gas. The surface layer’s geometric characteristics along with the material’s chemical composition affect the surface’s optical indices and catalytic properties, and, consequently, on the measured heat flux. The problem of construction a geometric model for micro-surface has both fundamental and applied aspects. The fundamental nature stems from the fact that considered processes arising from the interaction of gas atoms and molecules with the surface are very complex ones. In such a case the correct interpretation for results of aircraft fragments’ ground experimental method is required. The work’s applied significance is determined by the need to optimize tools for flows diagnostic in high-enthalpy installations, in which simulation of thermal load affecting the aircraft in flight is taking place, as well as simulation of technological processes for heat-shielding materials and coatings development. Effective way for modeling of undifferentiated surfaces for gas dynamics problems solving is the use of fractal methods accounting the roughness at the micro- and nano-scale. They are based on the assertion that the natural surface’s structure has the same fractality at all levels. The development of this hypothesis has led to the emergence of a whole direction – material engineering – allowing most adequately describe self-organizing structures. Also, with the development of nanotechnologies, fractal geometry has found its own place in solving problems related to obtaining certain materials properties. As has been shown in the paper, fractal theory is a good mathematical tool for study of rigid bodies’ surface geometry and mechanisms influencing on the obtaining surface structure.


Sign in / Sign up

Export Citation Format

Share Document