nonlinear transport
Recently Published Documents


TOTAL DOCUMENTS

459
(FIVE YEARS 40)

H-INDEX

37
(FIVE YEARS 5)

Author(s):  
Dmitri V. Alexandrov ◽  
Andrey Yu. Zubarev

This theme issue, in two parts, continues research studies of transport phenomena in complex media published in the first part (Alexandrov & Zubarev 2021 Phil. Trans. R. Soc. A 379 , 20200301. ( doi:10.1098/rsta.2020.0301 )). The issue is concerned with theoretical, numerical and experimental investigations of nonlinear transport phenomena in heterogeneous and metastable materials of different nature, including biological systems. The papers are devoted to the new effects arising in such systems (e.g. pattern and microstructure formation in materials, impacts of external processes on their properties and evolution and so on). State-of-the-art methods of numerical simulations, stochastic analysis, nonlinear physics and experimental studies are presented in the collection of issue papers. This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’.


2021 ◽  
Vol 923 (2) ◽  
pp. 209
Author(s):  
A. Shalchi

Abstract Over the past two decades scientists have significantly improved our understanding of the transport of energetic particles across a mean magnetic field. Due to test-particle simulations, as well as powerful nonlinear analytical tools, our understanding of this type of transport is almost complete. However, previously developed nonlinear analytical theories do not always agree perfectly with simulations. Therefore, a correction factor a 2 was incorporated into such theories with the aim to balance out inaccuracies. In this paper a new analytical theory for perpendicular transport is presented. This theory contains the previously developed unified nonlinear transport theory, the most advanced theory to date, in the limit of small Kubo number turbulence. New results have been obtained for two-dimensional turbulence. In this case, the new theory describes perpendicular diffusion as a process that is sub-diffusive while particles follow magnetic field lines. Diffusion is restored as soon as the turbulence transverse complexity becomes important. For long parallel mean-free paths, one finds that the perpendicular diffusion coefficient is a reduced field line random walk limit. For short parallel mean-free paths, on the other hand, one gets a hybrid diffusion coefficient that is a mixture of collisionless Rechester & Rosenbluth and fluid limits. Overall, the new analytical theory developed in the current paper is in agreement with heuristic arguments. Furthermore, the new theory agrees almost perfectly with previously performed test-particle simulations without the need of the aforementioned correction factor a 2 or any other free parameter.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012009
Author(s):  
S V Bogomolov ◽  
A E Kuvshinnikov

Abstract This paper considers a new version of the discontinuous particle method, whose higher accuracy is based on the “predictor-corrector” scheme. The peculiarity of this version is a new criterion of rearranging particles at the “corrector” stage. In contrast to the previously used version with the analysis of overlapping particles, which required an assumption about their form, we use another key characteristic of particles, namely, their mass, more precisely, the assumption that in the nonlinear elastic transport not only particle masses are conserved but also the mass located between the centers of these particles. This requirement leads to the fact that changing a distance between particles in the process of their movement and conservation of mass in the space between them, lead to a change in the density of one of the particles. A new version arose in the solution of the two-dimensional transport problems. We emphasize that the discontinuity is smeared into a single particle, which indicates to a high accuracy of the method. The construction of the method for a simple nonlinear transport problem is a necessary step to simulate the complex gas dynamics problems.


2021 ◽  
Vol 87 (5) ◽  
Author(s):  
Axel Hallenbert ◽  
Gabriel G. Plunk

The tertiary instability is believed to be important for governing magnetised plasma turbulence under conditions of strong zonal flow generation, near marginal stability. In this work, we investigate its role for a collisionless strongly driven fluid model, self-consistently derived as a limit of gyrokinetics. It is found that a region of absolute stability above the linear threshold exists, beyond which significant nonlinear transport rapidly develops. Characteristically, this range exhibits a complex pattern of transient zonal evolution before a stable profile can arise. Nevertheless, the Dimits transition itself is found to coincide with a tertiary instability threshold, so long as linear effects are included. Through a simple and readily extendable procedure, tracing its origin to St-Onge (J. Plasma Phys., vol. 83, issue 05, 2017, 905830504), the stabilising effect of the typical zonal profile can be approximated, and the accompanying reduced mode estimate is found to be in good agreement with nonlinear simulations.


2021 ◽  
Vol 14 (10) ◽  
pp. 105001
Author(s):  
Tsuyoshi Hatano ◽  
Toshihiro Kubo ◽  
Shinichi Amaha ◽  
Yasuhiro Tokura ◽  
Seigo Tarucha

2021 ◽  
Vol 127 (9) ◽  
Author(s):  
Marek Wichtowski ◽  
Andrzej Ziółkowski

AbstractThis article presents a critical look at the standard theory of bright and dark photorefractive screening solitons. We pay attention to the commonly overlooked fact of the inconsistency of the theory in the context of the accordance of soliton solution with the microscopic band transport models. Taking into account the material equations for the semi-insulating semiconductor (SI-GaAs) and including the nonlinear transport of hot electrons, a simple differential equation has been developed to determine the distribution of refractive index changes in the material for a localized optical beam. An amendment to the standard solution of (1 + 1)D solitons has been proposed, which particularly should be used for dark solitons to obtain the plausible self-consistent solutions


Author(s):  
Dmitri V. Alexandrov ◽  
Andrey Yu Zubarev

The issue, in two parts, is devoted to theoretical, computational and experimental studies of transport phenomena in various complex systems (in porous and composite media; systems with physical and chemical reactions and phase and structural transformations; in biological tissues and materials). Various types of these phenomena (heat and mass transfer; hydrodynamic and rheological effects; electromagnetic field propagation) are considered. Anomalous, relaxation and nonlinear transport, as well as transport induced by the impact of external fields and noise, is the focus of this issue. Modern methods of computational modelling, statistical physics and hydrodynamics, nonlinear dynamics and experimental methods are presented and discussed. Special attention is paid to transport phenomena in biological systems (such as haemodynamics in stenosed and thrombosed blood vessels magneto-induced heat generation and propagation in biological tissues, and anomalous transport in living cells) and to the development of a scientific background for progressive methods in cancer, heart attack and insult therapy (magnetic hyperthermia for cancer therapy, magnetically induced circulation flow in thrombosed blood vessels and non-contact determination of the local rate of blood flow in coronary arteries). The present issue includes works on the phenomenological study of transport processes, the derivation of a macroscopic governing equation on the basis of the analysis of a complicated internal reaction and the microscopic determination of macroscopic characteristics of the studied systems. This article is part of the theme issue ‘Transport phenomena in complex systems (part 1)’.


Author(s):  
Margarita A. Nikishina ◽  
Dmitri V. Alexandrov

When describing the growth of crystal ensembles from metastable solutions or melts, a significant deviation from a spherical shape is often observed. Experimental data show that the shape of growing crystals can often be considered ellipsoidal. The new theoretical models describing the transient nucleation of ellipsoidal particles and their growth with and without fluctuating rates at the intermediate stage of bulk phase transitions in metastable systems are considered. The nonlinear transport (diffusivity) of ellipsoidal crystals in the space of their volumes is taken into account in the Fokker–Planck equation allowing for fluctuating growth rates. The complete analytical solutions of integro-differential models of kinetic and balance equations are found and analysed. Our solutions show that the desupercooling dynamics is several times faster for ellipsoidal crystals as compared to spherical particles. In addition, the crystal-volume distribution function is lower and shifted to larger particle volumes when considering the growth of ellipsoidal crystals. What is more, this function is monotonically increasing to the maximum crystal size in the absence of fluctuations and is a bell-shaped curve when such fluctuations are taken into account. This article is part of the theme issue ‘Transport phenomena in complex systems (part 1)’.


2021 ◽  
Vol 103 (24) ◽  
Author(s):  
Chuanchang Zeng ◽  
Snehasish Nandy ◽  
Sumanta Tewari

2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Maxim Olshanii ◽  
Dumesle Deshommes ◽  
Jordi Torrents ◽  
Marina Gonchenko ◽  
Vanja Dunjko ◽  
...  

The recently proposed map [5] between the hydrodynamic equations governing the two-dimensional triangular cold-bosonic breathers [1] and the high-density zero-temperature triangular free-fermionic clouds, both trapped harmonically, perfectly explains the former phenomenon but leaves uninterpreted the nature of the initial (t=0) singularity. This singularity is a density discontinuity that leads, in the bosonic case, to an infinite force at the cloud edge. The map itself becomes invalid at times t<0t<0. A similar singularity appears at t = T/4t=T/4, where T is the period of the harmonic trap, with the Fermi-Bose map becoming invalid at t > T/4t>T/4. Here, we first map—using the scale invariance of the problem—the trapped motion to an untrapped one. Then we show that in the new representation, the solution [5] becomes, along a ray in the direction normal to one of the three edges of the initial cloud, a freely propagating one-dimensional shock wave of a class proposed by Damski in [7]. There, for a broad class of initial conditions, the one-dimensional hydrodynamic equations can be mapped to the inviscid Burgers’ equation, which is equivalent to a nonlinear transport equation. More specifically, under the Damski map, the t=0 singularity of the original problem becomes, verbatim, the initial condition for the wave catastrophe solution found by Chandrasekhar in 1943 [9]. At t=T/8t=T/8, our interpretation ceases to exist: at this instance, all three effectively one-dimensional shock waves emanating from each of the three sides of the initial triangle collide at the origin, and the 2D-1D correspondence between the solution of [5] and the Damski-Chandrasekhar shock wave becomes invalid.


Sign in / Sign up

Export Citation Format

Share Document