scholarly journals Experimental PIV investigation of the PZT fans array coupling effect at high Reynolds numbers

2021 ◽  
Vol 2108 (1) ◽  
pp. 012010
Author(s):  
Yiyang Chen ◽  
Hao Ding ◽  
Ziwen Wang ◽  
Jianxin Li ◽  
Jiahuan Cui

Abstract Piezoelectric fan arrays are being increasingly emphasized for heat dissipation in small-sized electronic devices. In this study, PIV experiments were conducted to investigate the flow fields induced by piezoelectric fan arrays with different vibration modes and pitches at high Reynolds numbers (324< Re <509) in a stationary air environment. As a result, when the PZT fan array is vibrating in-phase, the saddle points in the time averaged flow field are formed and separated gradually as the pitch increases, the remnant vortex and the induced vortex interact to form a jet with a periodic oscillation in the direction. Jet velocity reaches a maximum at P = 3A. In counter-phase vibration, saddle points are separated from one region under large pitches, the interaction of counter-rotating induced vortices forms a vertical upward jet. The morphology of induced and remnant vortices with different vibration modes and array pitches are responsible for the jet formation and flow field pattern. The interaction of counter-rotating vortices in counter-phase vibration leads the jet intensity higher than in-phase vibration induced jet, the optimal setting of the PZT fan under this study is determined as P = 2.5A with counter-phase vibration. The experimental results provide validation for the simulation study and give guidance to the application

2012 ◽  
Vol 43 (5) ◽  
pp. 589-613
Author(s):  
Vyacheslav Antonovich Bashkin ◽  
Ivan Vladimirovich Egorov ◽  
Ivan Valeryevich Ezhov ◽  
Sergey Vladimirovich Utyuzhnikov

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1062-1071 ◽  
Author(s):  
A. Seifert ◽  
L. G. Pack

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 825-834
Author(s):  
F. Novak ◽  
T. Sarpkaya

2004 ◽  
Author(s):  
William L. Keith ◽  
Kimberly M. Cipolla ◽  
David R. Hart ◽  
Deborah A. Furey

Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


2011 ◽  
Vol 66 (14) ◽  
pp. 3204-3211 ◽  
Author(s):  
I. Roghair ◽  
Y.M. Lau ◽  
N.G. Deen ◽  
H.M. Slagter ◽  
M.W. Baltussen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document