scholarly journals Sorting Device Coding Print Quality Machine on Packing Box Prototype Utilizing Optical Character Recognition

2021 ◽  
Vol 2117 (1) ◽  
pp. 012017
Author(s):  
R A Firmansyah ◽  
I K Wicaksono ◽  
S Muharom ◽  
Y A Prabowo ◽  
A Fahruzi

Abstract The design of a system that can recognize the characters printed by the coding machine so that it can then determine the assessment of very good and bad prints, is the goal of this research. This system is useful as an indicator of an indication of a problem with the coding machine which is indicated by the number of products rejected by the system. In addition, this system is an effort to reduce printing errors so that they are sorted and do not pass to the market, thus causing misinformation to the public. This system is in the form of a moving conveyor table that has a firing area box and a reject rod as a product separator. The OCR method is programmed in a computer that is part of the system, to be able to recognize the characters printed by this coding machine. USB to TTL which functions as serial communication from the Laptop to the Microcontroller, is a complement to this tool. Testing as many as 60 times on 12 types of characters, this system has been carried out on this tool. There are six types of good characters and six types of bad characters, which have been provided. Of the 60 tests, the results were four failed tests. That is, the percentage of success of this tool is 93.33%, and the percentage of error is 6.66%.

1997 ◽  
Vol 9 (1-3) ◽  
pp. 58-77
Author(s):  
Vitaly Kliatskine ◽  
Eugene Shchepin ◽  
Gunnar Thorvaldsen ◽  
Konstantin Zingerman ◽  
Valery Lazarev

In principle, printed source material should be made machine-readable with systems for Optical Character Recognition, rather than being typed once more. Offthe-shelf commercial OCR programs tend, however, to be inadequate for lists with a complex layout. The tax assessment lists that assess most nineteenth century farms in Norway, constitute one example among a series of valuable sources which can only be interpreted successfully with specially designed OCR software. This paper considers the problems involved in the recognition of material with a complex table structure, outlining a new algorithmic model based on ‘linked hierarchies’. Within the scope of this model, a variety of tables and layouts can be described and recognized. The ‘linked hierarchies’ model has been implemented in the ‘CRIPT’ OCR software system, which successfully reads tables with a complex structure from several different historical sources.


2020 ◽  
Vol 2020 (1) ◽  
pp. 78-81
Author(s):  
Simone Zini ◽  
Simone Bianco ◽  
Raimondo Schettini

Rain removal from pictures taken under bad weather conditions is a challenging task that aims to improve the overall quality and visibility of a scene. The enhanced images usually constitute the input for subsequent Computer Vision tasks such as detection and classification. In this paper, we present a Convolutional Neural Network, based on the Pix2Pix model, for rain streaks removal from images, with specific interest in evaluating the results of the processing operation with respect to the Optical Character Recognition (OCR) task. In particular, we present a way to generate a rainy version of the Street View Text Dataset (R-SVTD) for "text detection and recognition" evaluation in bad weather conditions. Experimental results on this dataset show that our model is able to outperform the state of the art in terms of two commonly used image quality metrics, and that it is capable to improve the performances of an OCR model to detect and recognise text in the wild.


2014 ◽  
Vol 6 (1) ◽  
pp. 36-39
Author(s):  
Kevin Purwito

This paper describes about one of the many extension of Optical Character Recognition (OCR), that is Optical Music Recognition (OMR). OMR is used to recognize musical sheets into digital format, such as MIDI or MusicXML. There are many musical symbols that usually used in musical sheets and therefore needs to be recognized by OMR, such as staff; treble, bass, alto and tenor clef; sharp, flat and natural; beams, staccato, staccatissimo, dynamic, tenuto, marcato, stopped note, harmonic and fermata; notes; rests; ties and slurs; and also mordent and turn. OMR usually has four main processes, namely Preprocessing, Music Symbol Recognition, Musical Notation Reconstruction and Final Representation Construction. Each of those four main processes uses different methods and algorithms and each of those processes still needs further development and research. There are already many application that uses OMR to date, but none gives the perfect result. Therefore, besides the development and research for each OMR process, there is also a need to a development and research for combined recognizer, that combines the results from different OMR application to increase the final result’s accuracy. Index Terms—Music, optical character recognition, optical music recognition, musical symbol, image processing, combined recognizer  


Sign in / Sign up

Export Citation Format

Share Document