scholarly journals Numerical studies of the advective flow of heptadecane in a horizontal layer with a longitudinal temperature gradient at the lower boundary

2021 ◽  
Vol 2119 (1) ◽  
pp. 012085
Author(s):  
S A Kislitsyn ◽  
V S Berdnikov

Abstract Numerical studies of the convective flow of heptadecane in a horizontal layer with a suddenly applied longitudinal temperature gradient at the lower high-thermal conductivity boundary have been carried out by the finite element method. A system of nonstationary dimensionless equations of free convection containing stream function, velocity vortex, and temperature as variables was solved. The calculations were carried out with a free upper boundary with and without taking into account the influence of the thermocapillary effect.

Author(s):  
Junichiro Shiomi ◽  
Carl Fredrik Carlborg ◽  
Shigeo Maruyama

We have investigated heat and mass transport in single-walled carbon nanotubes (SWNTs) using molecular dynamics methods. Particular attention was paid on the non-equilibrium dynamics at the interface between SWNT and other materials, which strongly manifests in nanoscale. In the first part, we have investigated the heat transport through the interface between SWNTs and surrounding argon matrices in liquid and solid phases. By analyzing the energy relaxation from SWNT to the matrices using non-stationary molecular dynamics simulations, elastic and inelastic thermal energy transports across the interface were separately quantified. The result reveals that the elastic interaction transports energy much faster than the inelastic one, but carries much smaller energy due to slow intra-SWNT phonon relaxation. In the second part, we have investigated a possibility to utilize nonequilibrium thermal interface to transport water through an SWNT. By applying the longitudinal temperature gradient to the SWNT, it is demonstrated that the water cluster is efficiently driven at average acceleration proportional to the temperature gradient. However, the transport simulations with a junction of two different SWNTs suggest that an angstrom diameter difference may result in a significant drag for small diameter SWNTs.


Sign in / Sign up

Export Citation Format

Share Document