scholarly journals Research and Application of Standard Oil Dispensing System for Dissolved Gases in Transformer Oil

2021 ◽  
Vol 2125 (1) ◽  
pp. 012072
Author(s):  
Yanping Li ◽  
Yong Li

Abstract Measuring the content of dissolved gas components in transformer insulating oil by gas chromatography is an important means to judge the internal potential faults of oil filled electrical equipment in the process of operation supervision. The necessary work skills of power grid operators include the ability to detect the content of dissolved gas in transformer oil and judge the operation state of transformer. This paper introduces a preparation method and equipment of transformer standard oil. It can quickly prepare standard oils with various gas component contents. The standard oil quantity value is accurate, the data stability period is greater than 90 days, and the uncertainty is less than 5%. The equipment can be used for training and evaluation of transformer oil gas chromatographic analysis practitioners and calibration of transformer oil on-line gas chromatograph.

2011 ◽  
Vol 194-196 ◽  
pp. 2480-2486 ◽  
Author(s):  
Wei Gen Chen ◽  
Mai Hao

Power transformer on-line monitoring on dissolved gas in oil is one of the effective and technical means to achieve the transformer state detection and fault diagnosis, and oil-gas permeability is one of the core technologies to implement transformer on-line monitoring. The traditional methods of oil-gas separation such as vacuum method and mechanical oscillation method were unable to satisfy the requirements of transformer on-line monitoring; and the methods which were used commonly in recent years, like dynamic headspace separation, corrugated tube, carrier gas elution etc, have a high rate of gas-separation and have already been used in some on-line monitoring products. However, the problems still exist: easy formation of oil pollution, so the oil can not be recycled and the device structure is relatively complex. This paper based on the separation principle of polymer membrane, proposes mixed hollow fiber membrane made by polytetrafluoroethylene (PTFE) and polyhexafluoropropylene (PHFP), and designs an oil-gas separation test platform formed by the storage tank, oil-gas permeability tank, temperature controller and gas chromatographic analyzer etc, does laboratory research on the oil-gas permeability of the mixed hollow fiber membrane at different temperatures. The results show that, the permeability of the mixed hollow fiber membrane is obviously better than the commonly used single fluoride film or rubber film, seven fault gases H2, CO, CO2, CH4, C2H6, C2H4, and C2H2 can be separated efficiently form transformer oil within 24 hours. More to the point, the equilibrium time is short, the gas permeability is high and the test platform structure is simple, all of these advantages provide a strong guarantee for the development of on-line monitoring technology on dissolved gas in transformer oil.


Author(s):  
Qiang Gao ◽  
Jicheng Dai ◽  
Feng Yuan ◽  
Fenghou Pan ◽  
Zailin Li

2012 ◽  
Vol 614-615 ◽  
pp. 1163-1167 ◽  
Author(s):  
Yang Liu Li ◽  
Wen Da Wu

Concentration detection of gases dissolved in transformer insulation oil is an effective method to diagnose incipient fault in electrical equipment. The permeation process of gases dissolved in transformer oil through extraction membrane is studied. Temperature dependence with accuracy of on-line DGA results through gases extraction with polymer membrane is analysed. An algorithm which includes temperature coefficient which can improve the accuracy of DGA results is proposed. An on-line DGA system with Teflon membrane and electrochemical gas sensors is constructed; while the results are adjust by temperature coefficient. Compared with GC results in the laboratory, the accuracy of the on-line DGA results has been improved.


2014 ◽  
Vol 602-605 ◽  
pp. 2953-2957
Author(s):  
Guo Bin Liu ◽  
Ning Wang ◽  
Qing Hao Wang ◽  
Tian Shu Hai ◽  
Chuan Zong Zhao ◽  
...  

Discharge of failure was the fault type are likely to occur in transformers, bushings, transformers, and the extent of damage to the equipment is a serious and direct impact on the stable operation of the system, first introduced the principle and gas chromatographic analysis its test methods, then gas chromatography equipment discharge failure is how to judge the conduct described. Through the analysis of transformer oil chromatographic method can be found as early as possible transformers and other equipment inside the existence of latent failures, thus chromatography is to oversee and guarantee the safe operation of an important means of transformer.


2019 ◽  
Vol 114 ◽  
pp. 04005
Author(s):  
Ngo Van Cuong ◽  
Lidiia I. Kovernikova

The parameters of electrical network modes often do not meet the requirements of Russian GOST 32144-2013 and the guidelines of Vietnam. In the actual operating conditions while there is the non-sinusoidal mode in electrical networks voltage and current harmonics are present. Harmonics result in overheating and damage of power transformers since they cause additional active power losses. Additional losses lead to the additional heat release, accelerating the process of insulating paper, transformer oil and magnetic structure deterioration consequently shortening the service life of a power transformer. In this regard there arises a need to develop certain scientific methods that would help demonstrate that low power quality, for instance could lead to a decrease in the electrical equipment service life. Currently we see a development of automated systems for continuous monitoring of power quality indices and mode parameters of electrical networks. These systems could be supplemented by characteristics calculating programs that give out a warning upon detection of the adverse influence of voltage and current harmonics on various electrical equipment of both electric power providers and electric power consumers. A software program presented in the article may be used to predict the influence of voltage and current harmonics on power transformers.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Nitin K. Dhote ◽  
Jagdish B. Helonde

Dissolved gas analysis (DGA) of transformer oil has been one of the most reliable techniques to detect the incipient faults. Many conventional DGA methods have been developed to interpret DGA results obtained from gas chromatography. Although these methods are widely used in the world, they sometimes fail to diagnose, especially when DGA results fall outside conventional methods codes or when more than one fault exist in the transformer. To overcome these limitations, the fuzzy inference system (FIS) is proposed. Two hundred different cases are used to test the accuracy of various DGA methods in interpreting the transformer condition.


Sign in / Sign up

Export Citation Format

Share Document