scholarly journals Numerical analysis of the support platform for an unmanned aerial vehicle

2021 ◽  
Vol 2130 (1) ◽  
pp. 012029
Author(s):  
Z Czyż ◽  
S Suwała ◽  
P Karpiński ◽  
K Skiba

Abstract The study investigates a thin-walled support platform for an unmanned aerial vehicle, i.e. aluminum beams connected by flat bars and angle irons. The construction is a kind of frame for a propulsion unit of the designed aircraft which is a combination of a multi-copter and a gyrocopter. This construction was tested for various load patterns to investigate the stresses and strains its profiles are connected. The load patterns correspond to different operation modes of the propulsion system, and the finite element method (FEM) and the SolidWorks software were used for the numerical calculations. The research was done for elastic operation of the individual components of the support platform. The analysis enabled to verify the state of stresses on the critical spots of the construction and to develop a construction for ground and flight tests to verify the correct operation of the propulsion control system and optimize its operation in different flight states.

Author(s):  
Younsaeng Lee ◽  
Seungjoo Kim ◽  
Jinyoung Suk ◽  
Hueonjoon Koo ◽  
Jongseong Kim

2021 ◽  
pp. 49-54
Author(s):  
V.A. Ogorodov

Different ways of fixing of stepped thin-walled cylinders during honing are analyzed. The conditions for increasing the accuracy of hole machining are determined on the basis of unevenness of cylinder deformations from clamping forces and radial forces simulating cutting forces. The studies used the finite element method and the DEFORM-3D V6.1 software package. Keywords: honing, stepped thin-walled cylinder, hole, accuracy, fixing method, deformation, unevenness, DEFORM-3D V6.1 software package. [email protected]


Inventions ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 48
Author(s):  
Brijesh Patel ◽  
Bhumeshwar Patle

In the present scenario for the development of the unmanned aerial vehicle (UAV), artificial intelligence plays an important role in path planning and obstacle detection. Due to different environments, it is always a task to achieve the proper moment for achieving the target goal while avoiding obstacles with minimum human interference. To achieve the goal with the avoidance of obstacles, individual optimization techniques with metaheuristic algorithms such as fuzzy, particle swarm optimization (PSO), etc. were implemented in various configurations. However, the optimal solution was not attained. Thus, in order to achieve an optimal solution, a hybrid model was developed by using the firefly algorithm and the fuzzy algorithm, establishing multiple features of the individual controller. The path and time optimization were achieved by a standalone controller and a hybrid firefly–fuzzy controller in different conditions, whereby the results of the controller were validated by simulation and experimental results, highlighting the advantages of the hybrid controller over the single controller.


2015 ◽  
Vol 3 (4) ◽  
pp. 192-204 ◽  
Author(s):  
Michael A. Thamann ◽  
Suzanne Weaver Smith ◽  
Sean C.C. Bailey ◽  
E. Brady Doepke ◽  
Scott W. Ashcraft

In this paper, an approach is described to implement autonomous (waypoint tracking) flight in a testbed airframe, which uses wing twist for roll control. These flights were performed using an existing commercial autopilot. Aileron effectiveness was identified as a parameter that could be modified to maintain roll control during autonomous flight. A modeling process was then developed to calculate the aileron effectiveness for a wing shaping demonstrator aircraft utilizing numerically determined aerodynamic properties. Simulations and flight tests with the testbed aircraft were performed that demonstrated suitability of the approach for autonomous flight. In-flight aileron doublets were used to validate the aileron effectiveness predicted by the numerical model, which matched within 7%.


2012 ◽  
Vol 268-270 ◽  
pp. 504-509
Author(s):  
Biao Gao ◽  
Jie Sun ◽  
Jian Feng Li

According to the technical problems such as low stiffness vibration and dimension error in milling Ti6Al4V thin-walled component, the manufacturing with paraffin reinforcement is studied. Firstly, paraffin formula for milling thin-walled component is researched. Secondly, applying the finite element method (FEM) to predict the deformation of machining with paraffin reinforcement and the corresponding milling experiments is done to check the the validity of the model. Finally, the influences of machining accuracy about different paraffin formulas for the same component are obtained. This study supplies support for the research of paraffin formula which are based on reducing the distortion of workpiece.


2003 ◽  
Vol 17 (5) ◽  
pp. 654-667 ◽  
Author(s):  
Jinyoung Suk ◽  
Younsaeng Lee ◽  
Seungjoo Kim ◽  
Hueonjoon Koo ◽  
Jongseong Kim

2021 ◽  
Author(s):  
Nikola Sklaličanová ◽  
◽  
Branislav Kandera

The paper titled "Unmanned aerial vehicle pilot training" is focused on the analysis of unmanned aerial vehicle pilot training and the importance of using an unmanned flight simulator during the practical training of unmanned aerial vehicle pilots. For the realization of the paper, we used a device that served to measure the mental workload of unmanned aerial vehicle pilots during simulated and practical flight. Our experiment involved 5 unmanned aerial vehicle pilots in training who had zero or minimal flying experience. The aim of this work was to investigate to what extent mental workload acts on UAV pilots during simulated and practical flights. The measurements and their analysis showed that a much greater load is exerted on the pilots of unmanned aerial vehicles during practical flight. Through a primary experiment of already experienced pilots, we concluded that the majority of respondents would welcome the opportunity to use an unmanned flight simulator during their training. The paperconcludes with a summary of the individual measurement results, graphical representations of the respondents' answers, as well as an implementation design that could be applied to the training of UAV pilots.


2021 ◽  
Vol 9 (10) ◽  
pp. 1060
Author(s):  
Silvia Maláková ◽  
Michal Puškár ◽  
Peter Frankovský ◽  
Samuel Sivák ◽  
Daniela Harachová

The basic properties of gears must be considered: the shape of their gearing, their load capacity, and the meshing stiffness, which affects the noise and vibration. When designing large gears, it is important to choose the correct shape of the gear body. Large gears used in marine gearboxes must be designed with as little weight as possible. The requirements of sufficient stiffness of the gear wheel body, as well as the meshing stiffness, must be met. This paper is devoted to the influence of spur gear wheel body parameters on gearing deformation and meshing stiffness. The stiffness of the gear is solved on the basis of the deformation of the gearing teeth, which is determined by the finite element method. Examples of the simulation and subsequent processing of results demonstrates how the individual parameters of the gear wheel body influence the stiffness of the gearing teeth. At the same time, the results point to designs of suitable shape and dimensions to achieve the required stiffness of the gearing teeth, but with the lowest possible weight of the spur gear wheel body.


Sign in / Sign up

Export Citation Format

Share Document