individual measurement
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 56)

H-INDEX

17
(FIVE YEARS 4)

Author(s):  
Michal Cieslak ◽  
Christoph Kling ◽  
Andrea Wolff

Prolonged exposure to airborne ultrasound in a workplace can have a detrimental influence on a worker’s well-being. Given the ever-increasing use of ultrasonic industrial equipment, it is of vital importance—and may also be regulated by law—to monitor ultrasound exposure during a normal workday as part of workplace risk assessment. However, the devices currently utilized exhibit limitations with regard to both their operational frequency and their portability (wearability). In this paper, the first prototype of a high-frequency and ultrasound personal exposimeter is presented in the light of the latest national and international standards governing high-frequency and ultrasonic noise measurement in the field of occupational health monitoring. The prototype was tested in the laboratory environment in order to assess its sound level detection capabilities in both the audible and ultrasonic frequency ranges. Several common industrial scenarios—including an ultrasonic welding machine, an ultrasonic cleaning bath, and a compressed air gun—were simulated in a laboratory environment. For each simulated set-up, a corresponding high-frequency or ultrasonic signal was fed through a specially prepared generation chain. Each experimental scenario was initially surveyed with an ultrasound level meter previously tested up to 100 kHz. This was followed by a measurement with the prototype. For this study, the simulated sound signals varied between 10 kHz and 40 kHz on the frequency scale and between 60 dB and 90 dB in amplitude. The portability of the prototype, which may be required to be worn throughout an entire workday (e.g., 8 h), was also considered. All the experiments were performed on a customized ultrasound measurement set-up within a free-field environment located at the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany. Results obtained suggest a good agreement between the measurements performed with both devices in the louder areas of the sound fields produced. Because the overall measurement uncertainty is highly dependent on the specificity of the individual measurement set-up and measurement procedure, an uncertainty budget estimated for the prototype considers electro-acoustical contributions only.


2021 ◽  
Vol 9 (4) ◽  
pp. 417-429
Author(s):  
Thanchanok Aramrueng ◽  
Peera Tangtammaruk

The disposition effect is a form of behavioral bias that tends to result in investors holding on to their losing stocks for too long and selling winning stocks too soon. It can be explained by the behavioral economics theory of loss aversion. Even though many have studied this kind of behavioral bias in a variety of different countries, none of them have investigated the disposition effect in the case of Thailand. Therefore, the main objective of our study is to test the disposition effect among Thais by applying the experimental economic approaches of Weber & Camerer (1998) and Odean (1998) whilst also including the findings from questionnaires and interviews. We set up a simulation stock trading market to test the disposition effect of participants regardless of whether they had stock trading experienced or not. Subjects were required to trade among six stocks in 14 trading periods. We also added three more periods to test how different types of news impacted the subjects’ trading decisions. In addition, we analyzed socioeconomic factors that affect disposition effect behavior by using an econometric binary choice model. We found that this experiment can exhibit the disposition effect of subjects in terms of overall and individual measurement. In normal stock trading situations, we found that over 70% of subjects showed clear signs of the disposition effect, which seemed to decrease after they received fictional news.


2021 ◽  
pp. 107699862110520
Author(s):  
Jin Liu ◽  
Robert A. Perera ◽  
Le Kang ◽  
Roy T. Sabo ◽  
Robert M. Kirkpatrick

This study proposes transformation functions and matrices between coefficients in the original and reparameterized parameter spaces for an existing linear-linear piecewise model to derive the interpretable coefficients directly related to the underlying change pattern. Additionally, the study extends the existing model to allow individual measurement occasions and investigates predictors for individual differences in change patterns. We present the proposed methods with simulation studies and a real-world data analysis. Our simulation study demonstrates that the method can generally provide an unbiased and accurate point estimate and appropriate confidence interval coverage for each parameter. The empirical analysis shows that the model can estimate the growth factor coefficients and path coefficients directly related to the underlying developmental process, thereby providing meaningful interpretation.


2021 ◽  
Author(s):  
Jos van Geffen ◽  
Henk Eskes ◽  
Steven Compernolle ◽  
Gaia Pinardi ◽  
Tijl Verhoelst ◽  
...  

Abstract. Nitrogen dioxide (NO2) is one of the main data products measured by the Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite, which combines a high signal-to-noise ratio with daily global coverage and high spatial resolution. TROPOMI provides a valuable source of information to monitor emissions from local sources such as power plants, industry, cities, traffic and ships, and variability of these sources in time. Validation exercises of NO2 version v1.2-v1.3 data, however, have revealed that TROPOMI's tropospheric vertical columns (VCDs) are too low by up to 50 % over highly polluted areas. These findings are mainly attributed to biases in the cloud pressure retrieval, the surface albedo climatology and the low resolution of the a-priori profiles derived from global simulations of the TM5-MP chemistry model. This study describes improvements in the TROPOMI NO2 retrieval leading to version v2.2, operational since 1 July 2021. Compared to v1.x, the main changes are: (1) The NO2-v2.2 data is based on version 2 level-1B (ir)radiance spectra with improved calibration, which results in a small and fairly homogeneous increase of the NO2 slant columns of 3 to 4 %, most of which ends up as a small increase of the stratospheric columns; (2) The cloud pressures are derived with a new version of the FRESCO cloud retrieval already introduced in NO2-v1.4, which lead to a lowering of the cloud pressure, resulting in larger tropospheric NO2 columns over polluted scenes with a small but non-zero cloud coverage; (3) For cloud-free scenes a surface albedo correction is introduced based on the observed reflectance, which also leads to a general increase of the tropospheric NO2 columns over polluted scenes of order 15 %; (4) An outlier removal was implemented in the spectral fit, which increases the number of good quality retrievals over the South-Atlantic Anomaly region and over bright clouds where saturation may occur; (5) Snow-Ice information is now obtained from ECMWF weather data, increasing the number of valid retrievals at high latitudes. On average the NO2-v2.2 data have tropospheric VCDs that are between 10 and 40 % larger than the v1.x data, depending on the level of pollution and season; the largest impact is found at mid- and high-latitudes in wintertime. This has brought these tropospheric NO2 closer to OMI observations. Ground-based validation shows on average an improvement of the negative bias of the stratospheric (from −6 % to −3 %), tropospheric (from −32 % to −23 %) and total (from −12 % to −5 %) columns. For individual measurement stations, however, the picture is more complicated, in particular for the tropospheric and total columns.


2021 ◽  
Author(s):  
◽  
Petar Andrejić

<p>I explore the limits of how tightly a beam can be focused, and derive a focal parameter for scalar beams that can be symbolically evaluated for most beams, and is guaranteed to be convergent for physical beams, that compares peak in- tensity to the total intensity in the beam profile. I argue that this parameter is superior to spot size, and use this to derive a rigorous limit of focusing for scalar beams. A particular beam known as the proto-beam achieves this tight- est focus possible. I show the generalisation of this measure to electromagnetic beams, and place a lower bound on the focal extent of electromagnetic beams. I also propose the use of exponential regulators as alternatives to moment based measures, as a solution to the convergence issues created by the power law decay of exact solutions.  I explore the Doppler shift for finite beams, and how monochromatic beams become polychromatic under a Lorentz boost. The local frequency is also explored, and I show that a deviation of the local frequency from the Doppler frequency will occur due to wavelength broadening near the focus.  Lekner and I examine a beam that closely approximates a paraxial Gaussian beam radially, and examine the phase singularities for optical beams that occur near the zeros of the beams wavefunction. We also investigate attempts to find exact solutions with Gaussian profiles, and show that this is impossible; any such beam will be evanescent and exponentially grow. Finally, I investigate the property of finite classical electromagnetic pulses having a zero momentum frame, and show that for quantum single photon pulses this property holds for the expectation value. I show that any individual measurement however, still measures a light-like four-momentum for the photon.</p>


2021 ◽  
Author(s):  
◽  
Petar Andrejić

<p>I explore the limits of how tightly a beam can be focused, and derive a focal parameter for scalar beams that can be symbolically evaluated for most beams, and is guaranteed to be convergent for physical beams, that compares peak in- tensity to the total intensity in the beam profile. I argue that this parameter is superior to spot size, and use this to derive a rigorous limit of focusing for scalar beams. A particular beam known as the proto-beam achieves this tight- est focus possible. I show the generalisation of this measure to electromagnetic beams, and place a lower bound on the focal extent of electromagnetic beams. I also propose the use of exponential regulators as alternatives to moment based measures, as a solution to the convergence issues created by the power law decay of exact solutions.  I explore the Doppler shift for finite beams, and how monochromatic beams become polychromatic under a Lorentz boost. The local frequency is also explored, and I show that a deviation of the local frequency from the Doppler frequency will occur due to wavelength broadening near the focus.  Lekner and I examine a beam that closely approximates a paraxial Gaussian beam radially, and examine the phase singularities for optical beams that occur near the zeros of the beams wavefunction. We also investigate attempts to find exact solutions with Gaussian profiles, and show that this is impossible; any such beam will be evanescent and exponentially grow. Finally, I investigate the property of finite classical electromagnetic pulses having a zero momentum frame, and show that for quantum single photon pulses this property holds for the expectation value. I show that any individual measurement however, still measures a light-like four-momentum for the photon.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Jiahui Chen ◽  
Yating Tang ◽  
Qinghe Jing ◽  
Yi Lu ◽  
Yongxiang Jiang

Purpose: To analyze the anterior, posterior, and total corneal spherical aberrations (ASA, PSA, and TSA) in patients with Chinese bilateral ectopia lentis (EL).Methods: A cross-sectional study was conducted to evaluate corneal spherical aberration (CSA) using a Pentacam system at the 6-mm optical zone. Axial length, keratometry, astigmatism, and corneal asphericity were also determined.Results: This study included 247 patients (420 eyes) with a mean age of 18.1 years. The values of ASA, PSA, and TSA were 0.136 ± 0.100 μm, −0.118 ± 0.030 μm, and 0.095 ± 0.095 μm, respectively. In the EL patients with Marfan syndrome (MFS), ASA and TSA were significantly lower than in the non-MFS patients (0.126 ± 0.094 μm vs. 0.155 ± 0.107 μm, P = 0.004 for ASA; 0.085 ± 0.091 μm vs. 0.114 ± 0.099 μm, P = 0.003 for TSA), whereas PSA was not significantly different (P = 0.061). The values of ASA and TSA were significantly higher in the patients with EL aged ≥ 40 years old than in younger patients, whereas ASA and PSA were lower in patients aged &lt;10 years old than in older patients (all P &lt; 0.05). In the multiple linear regression analysis, age, keratometry, astigmatism, anterior asphericity, higher-order aberration (HOA), and lower-order aberration (LOA) were positively or negatively correlated with TSA in the patients with EL (r = 0.681, P &lt; 0.001).Conclusions: Corneal spherical aberration was low in the patients with EL especially for MFS and tended to increase with aging. Preoperatively, individual measurement of CSA was necessary for bilateral EL patients with MFS.


Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 968-976
Author(s):  
Klaus Wick

Quantum measurements of physical quantities are often described as ideal measurements. However, only a few measurements fulfil the conditions of ideal measurements. The aim of the present work is to describe real position measurements with detectors that are able to detect single particles. For this purpose, a detector model is developed that can describe the time dependence of the interaction between a non-relativistic particle and a detector. The example of a position measurement shows that this interaction can be described with the methods of quantum mechanics. At the beginning of a position measurement, the detector behaves as a target consisting of a large number of quantum mechanical systems. In the first reaction, the incident particle interacts with a single atom, electron or nucleus, but not with the whole detector. This reaction and all following reactions are quantum mechanical processes. At the end of the measurement, the detector can be considered as a classical apparatus. A detector is neither a quantum mechanical system nor a classical apparatus. The detector model explains why one obtains a well-defined result for each individual position measurement. It further explains that, in general, it is impossible to predict the outcome of an individual measurement.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7344
Author(s):  
Zhiming Guo ◽  
Hanbo Deng ◽  
Jiajin Li ◽  
Ran Liao ◽  
Hui Ma

Suspended particles affect the state and vitality of the marine ecosystem. In situ probing and accurately classifying the suspended particles in seawater have an important impact on ecological research and environmental monitoring. Individual measurement of the optical polarization parameters scattered by the suspended particles has been proven to be a powerful tool to classify the particulate compositions in seawater. In previous works, the temporal polarized light pulses are sampled and averaged to evaluate the polarization parameters. In this paper, a method based on dense sampling of polarized light pulses is proposed and the experimental setup is built. The experimental results show that the dense sampling method optimizes the classification and increases the average accuracy by at least 16% than the average method. We demonstrate the feasibility of dense sampling method by classifying the multiple types of particles in mixed suspensions and show its excellent generalization ability by multi-classification of the particles. Additional analysis indicates that the dense sampling method basically takes advantage of the high-quality polarization parameters to optimize the classification performance. The above results suggest that the proposed dense sampling method has the potential to probe the suspended particles in seawater in red-tide early warning, as well as sediment and microplastics monitoring.


According to the requirements for the technological processes of purification and separation of the seed mixture to obtain the sunflower seed material of the parent components (varietal purity – 98,0-99,9%) for all parts of the breeding and seed production process, a rational precision technological scheme of the separation processes has been developed, which includes automation of technical processes of separation means. In order to increase the efficiency of the sunflower breeding and seed-growing process, a device for automatic seed phenotyping has been added to the developed technological line, which can significantly intensify and shorten the breeding process and improve the design of the breeding program through bioinformatic data analysis and seed sorting. Functional dependencies are established and methods of automated control of precision mechanized process of seed separation are developed on the basis of coordination of its mode and technological parameters. Tape device for automatic phenotyping of sunflower seed material according to its morphological and marker features have been developed. The device are configured for high accuracy of individual measurement of the geometric dimensions of sunflower seeds with determination of their shape and color and provide low complexity and high technological implementation of the phenotyping process (determination, identification and separation) of seeds.


Sign in / Sign up

Export Citation Format

Share Document