roll control
Recently Published Documents


TOTAL DOCUMENTS

338
(FIVE YEARS 49)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Author(s):  
William Blunt ◽  
Fintan Healy ◽  
Ronald C. Cheung ◽  
Mark H. Lowenberg ◽  
Jonathan E. Cooper
Keyword(s):  

Author(s):  
H Demirel ◽  
A Doğrul ◽  
S Sezen ◽  
F Alarçin

A backstepping control design procedure for nonlinear fin roll control of a trawler is presented in this paper. A roll equation consisting of linear and nonlinear damping and restoring moment on the roll response is expressed. Flow analyses are carried out for a scaled model of trawler type fishing vessel including fin stabilizers on both sides of the hull. The fin stabilizer geometry is chosen as NACA 0015 foil section which is widely used in the literature. The flow analyses are performed by using a commercial computational fluid dynamics (CFD) software based on finite volume method. The flow problem is modeled in a 3-dimensional manner while the flow is considered as steady, incompressible and fully turbulent. The numerical model consists of the ship wetted surface and the fin stabilizer in order to investigate the hull-fin interaction. Non-dimensional lift coefficients of the fin stabilizer for different angles of attack are gained. Both controlled and uncontrolled roll motions are examined and simulated in time domain for the maximum lift coefficient. Backstepping controller for roll motion has given a rapid and precise result.


Author(s):  
Jun Chen

When the unmanned vehicle is disturbed by the outside world or carries out dangerous actions such as steering and continuous lane changing, the yaw stability of the unmanned vehicle decreases and the dangerous situation such as rollover is easy to occur. In this paper, the intelligent detection method for roll stability of unmanned vehicles based on fuzzy control is studied. The roll control system of the unmanned vehicle based on a double-layer control strategy is designed. The roll stability of the unmanned vehicle is controlled by an upper-layer fuzzy controller and lower-layer differential braking control. The dynamic model and tire model are built in MATLAB/Simulink to restore the running characteristics of unmanned vehicles. Based on the operation characteristics, the roll stability of the unmanned vehicle’s roll control system based on fuzzy control is tested from three aspects: steady-state response, roll stability and dynamic stability coefficient. The experimental results show that the transverse load’s transfer rate of the proposed method is reduced by more than 0.2% compared with the contrast method, the yaw angular velocity, centroid’s roll angle and roll angle measured under the two working conditions are closer to the actual values, which shows that the method has better control effect and detection accuracy.


2021 ◽  
Vol 11 (22) ◽  
pp. 10631
Author(s):  
José Lobo do Vale ◽  
John Raffaelli ◽  
Afzal Suleman

A morphing wing concept allowing for coupled twist-camber shape adaptation is proposed. The design is based on an optimized thickness distribution both spanwise and chordwise to be able to morph the wing sections into targeted airfoil shapes. Simultaneously, the spanwise twist is affected by the actuation. The concept provides a higher degree of control on the lift distribution which can be used for roll control, drag minimization, and active load alleviation. Static deformation and flight tests have been performed to evaluate and quantify the performance of the proposed mechanism. The ground tests include mapped actuated wing shapes, and wing mass and actuation power requirements. Roll authority, load alleviation, and aerodynamic efficiency estimates for different configurations were calculated using a lifting line theory coupled with viscous 2D airfoil data. Roll authority was estimated to be low when compared to a general aviation aircraft while the load alleviation capability was found to be high. Differences between the lift to drag ratio between the reference and morphing wing configurations are considerable. Mass and actuation energy present challenges that can be mitigated. The flight tests were used to qualitatively assess the roll control capability of the prototype, which was found to be adequate.


Author(s):  
Haithem E. Taha ◽  
Ahmed Hassan ◽  
Moatasem Fouda

AbstractIn this paper, we review the concept of Lie brackets and how it can be exploited in generating motion in unactuated directions through nonlinear interactions between two or more control inputs. Applying this technique to the airplane flight dynamics near stall, a new rolling mechanism is discovered through nonlinear interactions between the elevator and the aileron control inputs. This mechanism, referred to as the Lie Bracket Roll Augmentation (LIBRA) mechanism, possesses a significantly higher roll control authority near stall compared to the conventional roll mechanism using ailerons only; it produces more than an order-of-magnitude stronger roll motion over the first second. The main contribution of this paper is to study the nonlinear flight physics that lead to this superior performance of the LIBRA mechanism. In fact, the LIBRA performance in free flight (six DOF) is double that in a confined environment of two-DOF roll-pitch dynamics. The natural feedback from the airplane motion (roll, yaw, and sideslip) into the LIBRA mechanism boosts its performance through interesting nonlinear interplay between roll and yaw, while exploiting some of the changes in the airplane characteristics near stall.


Author(s):  
Su Yong Kim ◽  
Yeon Geol Hwang ◽  
Sung Woong Moon

The existing underwater vehicle controller design is applied by linearizing the nonlinear dynamics model to a specific motion section. Since the linear controller has unstable control performance in a transient state, various studies have been conducted to overcome this problem. Recently, there have been studies to improve the control performance in the transient state by using reinforcement learning. Reinforcement learning can be largely divided into value-based reinforcement learning and policy-based reinforcement learning. In this paper, we propose the roll controller of underwater vehicle based on Deep Deterministic Policy Gradient(DDPG) that learns the control policy and can show stable control performance in various situations and environments. The performance of the proposed DDPG based roll controller was verified through simulation and compared with the existing PID and DQN with Normalized Advantage Functions based roll controllers.


2021 ◽  
Author(s):  
Anmol Shripad Patil ◽  
Eshita Nandi ◽  
Prasad Nanasaheb Punekar ◽  
Suyash Wagh

Abstract The purpose of carrying out the present work is to design, manufacture & test the progressive springs on an FS vehicle. This is one type of helical spring with a variable spring rate. The main purpose of designing progressive springs is to avail all the advantages of the variable spring rate over the linear spring rate and better ride quality along with roll control, compared to linear rate springs. We took several factors of vehicle dynamics under consideration before settling on progressive springs. Before starting with the design procedure, we had set objectives and followed the standard methodology of spring design to get the required output. Along with that, we took design philosophy under consideration. We reviewed all the parameters before finalizing the spring material as it is one of the major factors. We carried out all the necessary design calculations to complete the dimensions and stiffness of the spring. The conclusion helped us to achieve better ride quality and roll control accompanying the optimized spring design satisfying all the necessities such as load, stiffness, and deflection of progressive springs.


2021 ◽  
Vol 71 (5) ◽  
pp. 709-717
Author(s):  
Venkata Shashank Shankar Rayaprolu ◽  
R Vijayakumar

Autonomous underwater gliders (AUG) are a class of underwater vehicles that move using a buoyancy engine and forces from wings. Gliders execute turning motion with the help of a rudder or an internal roll control mechanism and the trajectory of the turn is a spiral. This paper analyses the sensitivity of the characteristics of spiral manoeuvre on the hydrodynamic coefficients of the glider. Based on the dynamics model of a gliding fish whose turn is enabled by a rudder, the effect of hydrodynamic coefficients of the hull and the rudder on the spiral motion are quantified. Local sensitivity analysis is undertaken using the indirect method. The order of importance of hydrodynamic coefficients is evaluated. It is observed that the spiral path parameters are most sensitive to the side force created by the rudder and the effect of the drag coefficient is predominant to that of the lift coefficients. This study will aid in quantifying the effect of change of geometry on the manoeuvrability of AUGs.


Sign in / Sign up

Export Citation Format

Share Document