scholarly journals COMSOL modeling of the lightning-generated electric field distribution in a chain of insulators of a 115 kV power transmission line

2021 ◽  
Vol 2135 (1) ◽  
pp. 012006
Author(s):  
A F Cadena ◽  
J S Mendoza ◽  
H F Ibáñez

Abstract The transmission lines installed in our city, to the outskirts of it and in the rest of the national territory produce a level of emissions of electric field, these levels vary depending on the physical disposition of the drivers, the distance between spans, the voltage level of the line, among others. These values must respect the exposure limits for individuals, as stipulated in Article 14 of RETIE. In this work will be developed a study of distribution of the electric field along a chain of insulators standard of tempered glass of a transmission line of 115 kV with the aid of the software COMSOL Multiphysics, to the impact of an atmospheric discharge on the storage cable with the help of ATPDraw software, taking into account variations in the value of the earthing resistance of the structure. With the electric field distribution values obtained by means of simulations carried out in the COMSOL Multiphysics software, comparisons are made of the magnitude of the obtained field, taking as a reference the stable state of the system without condition of pollutants. Initially a simulation of a transmission line of 115 kV is performed in the ATPDraw software, analyzing the lightning impulse generated on the guard cable, at different values of grounding resistance, to determine the waveform and reached value of overvoltage in the insulator chain. Then the overvoltage signal obtained with the help of ATPDraw software is recreated in the COMSOL Multiphysics software, to be able to visualize the distribution and behavior of the electric field along the chain, taking into account the different factors involved in the process, pollutants such as salinity, themes such as travelling waves etc. and thus determine possible line isolation failures by comparing the values achieved by simulating in COMSOL Multiphysics with respect to the CFO of the insulator chain.

2017 ◽  
Vol 74 (9) ◽  
pp. 854-861 ◽  
Author(s):  
Vladimir Stankovic ◽  
Dejan Jovanovic ◽  
Dejan Krstic ◽  
Vera Markovic ◽  
Momir Dunjic

Background/Aim. A mobile phone is a source of electromagnetic radiation located close to the head and consequently its intense use may cause harmful effects particularly in younger population. The aim of this study was to investigate the influence of electromagnetic field of the mobile phone on the pituitary gland of the child. Methods. In order to obtain the more accurate results for this research 3D realistic model of child's head whose size corresponds to an average child (7 years old) was created. Electric field distribution in child head model and values of Specific Absorption Rate (SAR) at the region of pituitary gland were determined. This study was performed for the frequencies of 900 MHz, 1800 MHz, and 2100 MHz, as the most commonly used in mobile communications. The special attention was dedicated to the values of the electric field and the values of the SAR in the pituitary gland. For all frequencies over 10 g and 1 g of tissue average SAR was calculated. The electric field distribution and values of average SAR for 10 g and 1 g trough the model of child's head were obtained by the using numerical calculation based on the Finite Integration Technique (FIT). Results. The largest value of electric field in the region of the pituitary gland was at the frequency of 900 MHz, as a consequence of the highest penetration depth. Lower values of the electric field in the region of the pituitary gland were at frequencies of 1,800 MHz and 2,100 MHz. The SAR in the pituitary gland decreased as the frequency increased as a direct consequence of lower penetration depth. Conclusion. The electric field strength from a mobile phone is higher than the value specified by standards for the maximum allowable exposure limits. The high values of the electric field are not only in the vicinity of a mobile phone but also in tissues and organs of the human head. Particular attention should be paid to the exposure of children to radiation of mobile phones. Smaller dimensions of children?s head and smaller thickness of tissues and organs have as a consequence greater penetration of electromagnetic waves.


Sign in / Sign up

Export Citation Format

Share Document