scholarly journals Photo-acoustic response of a single 430 nm gold particle: Semi-analytical model and picosecond ultrasonics measurements

2010 ◽  
Vol 214 ◽  
pp. 012046
Author(s):  
Y Guillet ◽  
C Rossignol ◽  
B Audoin ◽  
G Calbris ◽  
S Ravaine
2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Gianluca Rizzi ◽  
Giulio Benetti ◽  
Claudio Giannetti ◽  
Luca Gavioli ◽  
Francesco Banfi

Author(s):  
C. A. Arana ◽  
B. Sekar ◽  
M. A. Mawid

This paper describes an analytical and experimental investigation to obtain the thermoacoustic response of a demonstrator gas turbine engine combustor. The combustor acoustic response for two different fuel injector design configurations was measured. It was found that the combustor maximum peak to peak pressure fluctuations were 0.6 psi to 2 psi for configuration A and B respectively. Based on the measured acoustic response, another experimental investigation was conducted to identify the design features in configuration B that caused the increase in the acoustic response. The data showed that by changing the fuel injector swirler’s vane to inner passage discharge area ratio, the engine acoustic response could be lowered to an acceptable level. A simplified analytical model based on the lumped-parameter approach was then developed to investigate the effect of geometrical changes upon the engine response. The analytical model predicted the fuel injector/swirlers acoustic response as a function of the swirlers inner passage discharge area ratio and frequency. The predictions were consistent with the experimental observations, in particular, it was predicted that as the area ratio was increased, the system reactance was decreased and as a result the system changed from a damping to an amplifying system.


2009 ◽  
Vol 95 (6) ◽  
pp. 061909 ◽  
Author(s):  
Yannick Guillet ◽  
Clément Rossignol ◽  
Bertrand Audoin ◽  
Gaëtan Calbris ◽  
Serge Ravaine

2000 ◽  
Vol 124 (1) ◽  
pp. 46-57 ◽  
Author(s):  
C. A. Arana ◽  
B. Sekar ◽  
M. A. Mawid ◽  
C. B. Graves

This paper describes an analytical and experimental investigation to obtain the thermoacoustic response of a demonstrator gas turbine engine combustor. The combustor acoustic response for two different fuel injector design configurations was measured. It was found that the combustor maximum peak to peak pressure fluctuations were 0.6 psi to 2 psi for configuration A and B, respectively. Based on the measured acoustic response, another experimental investigation was conducted to identify the design features in configuration B that caused the increase in the acoustic response. The data showed that by changing the fuel injector swirler’s vane to inner passage discharge area ratio, the engine acoustic response could be lowered to an acceptable level. A simplified analytical model based on the lumped-parameter approach was then developed to investigate the effect of geometrical changes upon the engine response. The analytical model predicted the fuel injector/swirlers acoustic response as a function of the swirlers inner passage discharge area ratio and frequency. The predictions were consistent with the experimental observations, in particular, it was predicted that as the area ratio was increased, the system reactance was decreased and as a result the system changed from a damping to an amplifying system.


Author(s):  
George C. Ruben

The formation of shadows behind small particles has been thought to be a geometric process (GP) where the metal cap build up on the particle creates a shadow width the same size as or larger than the particle. This GP cannot explain why gold particle shadow widths are generally larger than the gold particle and may have no appreciable metal cap build up (fig. 1). Ruben and Telford have suggested that particle shadow widths are formed by the width dependent deflection of shadow metal (SM) lateral to and infront of the particle. The trajectory of the deflected SM is determined by the incoming shadow angle (45°). Since there can be up to 1.4 times (at 45°) more SM directly striking the particle than the film surface, a ridge of metal nuclei lateral to and infront of the particle can be formed. This ridge in turn can prevent some SM from directly landing in the metal free shadow area. However, the SM that does land in the shadow area (not blocked by the particle or its ridge) does not stick and apparently surface migrates into the SM film behind the particle.


1988 ◽  
Vol 49 (C8) ◽  
pp. C8-911-C8-912
Author(s):  
Yu. V. Rakitin ◽  
V. T. Kalinnikov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document