scholarly journals An Analysis of Slope Stability Based on Finite Element Method and Distinct Element Method

2022 ◽  
Vol 2148 (1) ◽  
pp. 012053
Author(s):  
Bowen Xu ◽  
Shijie Liu ◽  
Jing Wang

Abstract The analysis of slope stability involves complex geological and topographical boundary conditions, nonlinear behavior of material stress-strain, coupling analysis of initial in-situ stress, water pressure and seismic load, etc., and in most cases, analytical solutions cannot be obtained. Under the background of the continuous development of computer and calculation method, the numerical analysis method represented by finite element has been gradually popularized and applied in geotechnical engineering in 1970s, and has developed into a powerful calculation and analysis tool. Among them, the finite element strength reduction method and the discrete element method are the two most widely used slope numerical analysis methods. In this paper, two typical cases, Ankang reservoir landslide and Wenma Highway slope, are simulated by the two methods. Taking Ankang reservoir landslide as the research object, this paper would use MIDAS / GTS finite element analysis software, and two-dimensional finite element numerical simulation would be carried out to study the influence of reservoir water level periodic fluctuation on the reinforcement effect of anti-slide pile. Under the condition of water saturation and water loss cycle, main material of landslide body and landslide belt, namely the strong weathered phyllite, displays obvious deterioration phenomenon, showing the trend of rapid decline first and then slow decline; after the anti-slide pile is set in the middle and front of the slope, the stability of it has been greatly improved, but with the increasement of the number of water level changes, the reinforcement effect of the anti-slide pile continues to weaken, and the weakening speed is fast at first, and then slows down. Taking the bedding slope of Wenma Highway as the research object, this pater would adopt UDEC discrete element software to simulate the deformation and failure process of the slope after excavated, and analysize the failure mechanism at the same time. The failure process of bedding slope can be divided into four stages: the formation of tension cracks caused by excavation, the expansion of cracks and the formation of deformation body, the sliding of deformation body and the accumulation of damaged rock mass at the foot of slope. Tensile failure is the main failure mode, and shear failure occurs locally. The failure of bedding slope starts from the foot of slope, which is traction sliding.

2012 ◽  
Vol 170-173 ◽  
pp. 1087-1090
Author(s):  
Wei Bin Yuan ◽  
Cheng Min Ye ◽  
Ji Yao ◽  
Lie De Wang

In recent year, the foundations of the stability analysis of slope were provided by the development of finite element and discrete element method. Using finite element and discrete element method, the stability analysis of three typical slopes of shiwu thorp of Quzhou was carried out. The safety factors of slope profile were obtained. Based on the judgment criterion of slope stability,the slopes stability of shiwu thorp was judged. The results showed that the way to analyze the stability of soil slope is feasible.


1995 ◽  
Vol 05 (03) ◽  
pp. 351-365 ◽  
Author(s):  
V. SHUTYAEV ◽  
O. TRUFANOV

This paper is concerned with the numerical analysis of the mathematical model for a semiconductor device with the use of the Boltzmann equation. A mixed initial-boundary value problem for nonstationary Boltzmann-Poisson system in the case of one spatial variable is considered. A numerical algorithm for solving this problem is constructed and justified. The algorithm is based on an iterative process and the finite element method. A numerical example is presented.


2021 ◽  
Author(s):  
Krzysztof Fulawka ◽  
Witold Pytel ◽  
Piotr Mertuszka ◽  
Marcin Szumny

<p>Underground laboratories provide a unique environment for various industries and are a suitable place for developing new technologies for mining, geophysical surveys, radiation detection, as well as many other studies and measurements. Unfortunately, any operation in underground excavations is associated with exposure to many hazards not necessarily encountered in surface laboratories. One of the most dangerous events observed in underground conditions is the dynamic manifestation of rock mass pressure in form of rockburst, roof falls and mining tremors. Therefore, proper evaluation of geomechanical risk is a key element ensuring the safety of work in underground conditions. Finite Element Method-based numerical analysis is one of the tools which allow conducting a detailed geomechanical hazard assessment already at the object design stage. The results of such calculations may be the basis for the implementation of preventive measures before running up the underground facility.</p><p>Within this paper, the three-dimensional FEM-based numerical analysis of large-scale underground laboratory located in deep Polish copper mine was presented. The calculations were made with GTS NX software, which allowed determining the changes in the safety factor in surrounding of the analyzed area. Finally, the possibility of underground laboratory establishment, with respect to predicted stress and strain conditions, were determined.</p>


Sign in / Sign up

Export Citation Format

Share Document