scholarly journals On a classification of finite dimensional algebras with respect to the orthogonal (unitary) changes of basis

2016 ◽  
Vol 697 ◽  
pp. 012005 ◽  
Author(s):  
Ural Bekbaev

1968 ◽  
Vol 20 ◽  
pp. 398-409 ◽  
Author(s):  
Bruno J. Mueller

Nakayama proposed to classify finite-dimensional algebras R over a field according to how long an exact sequenceof projective and injective R-R-bimodules Xi they allow. He conjectured that if there exists an infinite sequence of this type, then R must be quasi-Frobenius; and he proved this when R is generalized uniserial (17).







Author(s):  
Nicoletta Cantarini ◽  
Fabrizio Caselli ◽  
Victor Kac

AbstractGiven a Lie superalgebra $${\mathfrak {g}}$$ g with a subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 , and a finite-dimensional irreducible $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 -module F, the induced $${\mathfrak {g}}$$ g -module $$M(F)={\mathcal {U}}({\mathfrak {g}})\otimes _{{\mathcal {U}}({\mathfrak {g}}_{\ge 0})}F$$ M ( F ) = U ( g ) ⊗ U ( g ≥ 0 ) F is called a finite Verma module. In the present paper we classify the non-irreducible finite Verma modules over the largest exceptional linearly compact Lie superalgebra $${\mathfrak {g}}=E(5,10)$$ g = E ( 5 , 10 ) with the subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 of minimal codimension. This is done via classification of all singular vectors in the modules M(F). Besides known singular vectors of degree 1,2,3,4 and 5, we discover two new singular vectors, of degrees 7 and 11. We show that the corresponding morphisms of finite Verma modules of degree 1,4,7, and 11 can be arranged in an infinite number of bilateral infinite complexes, which may be viewed as “exceptional” de Rham complexes for E(5, 10).



1982 ◽  
Vol 47 (4) ◽  
pp. 734-738
Author(s):  
Bruce I. Rose

In this note we show that taking a scalar extension of two elementarily equivalent finite-dimensional algebras over the same field preserves elementary equivalence. The general question of whether or not tensor product preserves elementary equivalence was originally raised in [4]. In [3] Feferman relates an example of Ersov which answers the question negatively. Eklof and Olin [7] also provide a counterexample to the general question in the context of two-sorted structures. Thus the result proved below is a partial positive answer to a general question whose status has been resolved negatively. From the viewpoint of applied model theory it seems desirable to find contexts in which positive statements of preservation can be obtained. Our result does have an application; a corollary to it increases our understanding of what it means for two division algebras to be elementarily equivalent.All algebras are finite-dimensional algebras over fields. All algebras contain an identity element, but are not necessarily associative.Recall that the center of a not necessarily associative algebra A is the set of elements which commute and “associate” with all elements of A. The notion of a scalar extension is an important one in algebra. If A is an algebra over F and G is an extension field of F, then the scalar extension of A by G is the algebra A ⊗F G.



1994 ◽  
Vol 82 (1) ◽  
pp. 15-29 ◽  
Author(s):  
Birge Zimmermann Huisgen


2021 ◽  
Vol 28 (01) ◽  
pp. 87-90
Author(s):  
Óscar Guajardo Garza ◽  
Marina Rasskazova ◽  
Liudmila Sabinina

We study the variety of binary Lie algebras defined by the identities [Formula: see text], where [Formula: see text] denotes the Jacobian of [Formula: see text], [Formula: see text], [Formula: see text]. Building on previous work by Carrillo, Rasskazova, Sabinina and Grishkov, in the present article it is shown that the Levi and Malcev theorems hold for this variety of algebras.



2021 ◽  
Vol 28 (01) ◽  
pp. 143-154
Author(s):  
Yiyu Li ◽  
Ming Lu

For any positive integer [Formula: see text], we clearly describe all finite-dimensional algebras [Formula: see text] such that the upper triangular matrix algebras [Formula: see text] are piecewise hereditary. Consequently, we describe all finite-dimensional algebras [Formula: see text] such that their derived categories of [Formula: see text]-complexes are triangulated equivalent to derived categories of hereditary abelian categories, and we describe the tensor algebras [Formula: see text] for which their singularity categories are triangulated orbit categories of the derived categories of hereditary abelian categories.



Sign in / Sign up

Export Citation Format

Share Document