scholarly journals Heat and Mass Transfer in a Falling Film Evaporator with Aqueous Lithium Bromide Solution

2016 ◽  
Vol 745 ◽  
pp. 032056 ◽  
Author(s):  
M Olbricht ◽  
J Addy ◽  
A Luke
1996 ◽  
Vol 118 (1) ◽  
pp. 45-49 ◽  
Author(s):  
T. A. Ameel ◽  
H. M. Habib ◽  
B. D. Wood

An analytical solution is presented for the effect of air (nonabsorbable gas) on the heat and mass transfer rates during the absorption of water vapor (absorbate) by a falling laminar film of aqueous lithium bromide (absorbent), an important process in a proposed open-cycle solar absorption cooling system. The analysis was restricted to the entrance region where an analytical solution is possible. The model consists of a falling film of aqueous lithium bromide flowing down a vertical wall which is kept at uniform temperature. The liquid film is in contact with a gas consisting of a mixture of water vapor and air. The gas phase is moving under the influence of the drag from the falling liquid film. The governing equations are written with a set of interfacial and boundary conditions and solved analytically for the two phases. Heat and mass transfer results are presented for a range of uniform inlet air concentrations. It was found that the concentration of the nonabsorbable gas increases sharply at the liquid gas interface. The absorption of the absorbate in the entrance region showed a continuous reduction with an increase in the amount of air.


2000 ◽  
Vol 123 (1) ◽  
pp. 30-42 ◽  
Author(s):  
William A. Miller ◽  
Majid Keyhani

A study of simultaneous heat and mass transfer was conducted on a vertical falling film absorber to better understand the mechanisms driving the heat and mass transfer processes. Thermographic phosphors were successfully used to measure the temperature profile along the length of the absorber test tube. These measures of the local variations in temperature enabled calculation of the bulk concentration along the length of the absorber. The bulk concentration varied linearly, which infers that the concentration gradient in the direction of flow is approximately constant. The implication is that the mass flux and therefore the absorber load can be solved for using a constant flux approximation. Design data and correlations are sparse in the open literature. Some experimental data are available; however, all literature data to date have been derived at mass fractions of lithium bromide ranging from 0.30 to 0.60. Experiments were therefore conducted with no heat and mass transfer additive on an internally cooled smooth tube of 0.01905-m outside diameter and of 1.53-m length. The data, for testing at 0.62 and 0.64 mass fraction, were scaled and correlated into both Nu and Sh formulations. The average absolute error in the Nu correlation is about ±3.5% of the Nu number reduced from the experimental data. The Sh correlation is about ±5% of the reduced Sh data. Data from the open literature were reduced to the authors Nu and Sh formulations, and were within 5% of the correlations developed in the present study. The study therefore provides test data with no heat and mass transfer additive and correlations for the coupled heat- and mass-transfer process that are validated against the extensive experimental data.


2018 ◽  
Vol 194 ◽  
pp. 01007
Author(s):  
Maria V. Bartashevich

Mathematical model of conjugated heat and mass transfer in absorption on the entrance region of the semi-infinite liquid film of lithium bromide water solution is investigated for different values of Froude number. The calculations shown that larger values of Froude number corresponds to a smaller thickness of the falling film. It was demonstrated that for large values of the Froude number the heat transfer from the surface is greater than for smaller values.


Sign in / Sign up

Export Citation Format

Share Document