scholarly journals LES of wind farm response to transient scenarios using a high fidelity actuator disk model

2016 ◽  
Vol 753 ◽  
pp. 032053 ◽  
Author(s):  
M Moens ◽  
M Duponcheel ◽  
G Winckelmans ◽  
P Chatelain
Author(s):  
Xing Xing Han ◽  
De You Liu ◽  
Chang Xu ◽  
Wen Zhong Shen ◽  
Lin Min Li ◽  
...  

Atmospheric stability affects wind turbine wakes significantly. High-fidelity approaches such as large eddy simulations (LES) with the actuator line (AL) model which predicts detailed wake structures, fail to be applied in wind farm engineering applications due to its expensive cost. In order to make wind farm simulations computationally affordable, this paper proposes a new actuator disk model (AD) based on the blade element method (BEM) and combined with Reynolds-averaged Navier–Stokes equations (RANS) to model turbine wakes under different atmospheric stability conditions. In the proposed model, the upstream reference velocity is firstly estimated from the disk averaged velocity based on the one-dimensional momentum theory, and then is used to evaluate the rotor speed to calculate blade element forces. Flow similarity functions based on field measurement are applied to limit wind shear under strongly stable conditions, and turbulence source terms are added to take the buoyant-driven effects into consideration. Results from the new AD model are compared with field measurements and results from the AD model based on the thrust coefficient, the BEM-AD model with classical similarity functions and a high-fidelity LES approach. The results show that the proposed method is better in simulating wakes under various atmospheric stability conditions than the other AD models and has a similar performance to the high-fidelity LES approach however in much lower computational cost.


Author(s):  
Suganthi Selvaraj ◽  
Anupam Sharma

A systematic analysis of a single-rotor horizontal axis wind turbine aerodynamics is performed to obtain a realistic potential maximum efficiency. It is noted that by including the effects of swirl, viscosity and finite number of blades, the maximum aerodynamic efficiency of a HAWT is within a few percentage points of the efficiency of commercially-available turbines. The need for investigating windfarm (as a unit) aerodynamics is thus highlighted. An actuator disk model is developed and implemented in the OpenFOAM software suite. The model is validated against 1-D momentum theory, blade element momentum theory, as well as against experimental data. The validated actuator disk model is then used to investigate an interesting microscale meteorological phenomenon called “flow convergence” caused by an array of wind turbines. This phenomenon is believed to be caused by the drop of pressure in wind farms. Wind farm numerical simulations are conducted with various approximations to investigate and explain the flow convergence phenomenon.


2020 ◽  
Vol 8 (8) ◽  
pp. 610
Author(s):  
Yen-Cheng Chiang ◽  
Yu-Cheng Hsu ◽  
Shiu-Wu Chau

This paper aims to demonstrate a simplified nonlinear wake model that fills the technical gap between the low-cost and less-accurate linear formulation and the high-cost and high-accuracy large eddy simulation, to offer a suitable balance between the prediction accuracy and the computational cost, and also to establish a robust approach for long-term wind farm power prediction. A simplified actuator disk model based on the momentum theory is proposed to predict the wake interaction among wind turbines along with their power output. The three-dimensional flow field of a wind farm is described by the steady continuity and momentum equation coupled with a k-ε turbulence model, where the body force representing the aerodynamic impact of the rotor blade on the airflow is uniformly distributed in the Cartesian cells within the actuator disk. The characteristic wind conditions identified from the data of the supervisory control and data acquisition (SCADA) system were employed to build the power matrix of these typical wind conditions for reducing the computation demands to estimate the yearly power production. The proposed model was favorably validated with the offshore measurement of Horns Rev wind farm, and three Taiwanese onshore wind farms were forecasted for their yearly capacity factors with an average error less than 5%, where the required computational cost is estimated about two orders of magnitude smaller than that of the large eddy simulation. However, the proposed model fails to pronouncedly reproduce the individual power difference among wind turbines in the investigated wind farm due to its time-averaging nature.


Author(s):  
Michael B. Wilkinson ◽  
Johan van der Spuy ◽  
Theodor W. von Backström

An axial flow fan design methodology is developed to design large diameter, low pressure rise, rotor-only fans for large air-cooled heat exchangers. The procedure aims to design highly efficient axial flow fans that perform well when subjected to off design conditions commonly encountered in air-cooled heat exchangers. The procedure makes use of several optimisation steps in order to achieve this. These steps include optimising the hub-tip ratio, vortex distribution, blading and aerofoil camber distributions in order to attain maximum total-to-static efficiency at the design point. In order to validate the design procedure a 24 ft, 8 bladed axial flow fan is designed to the specifications required for an air-cooled heat exchanger for a concentrated solar power (CSP) plant. The designed fan is numerically evaluated using both a modified version of the actuator disk model and a three dimensional periodic fan blade model. The results of these CFD simulations are used to evaluate the design procedure by comparing the fan performance characteristic data to the design specification and values calculated by the design code. The flow field directly down stream of the fan is also analysed in order to evaluate how closely the numerically predicted flow field matches the designed flow field, as well as determine whether the assumptions made in the design procedure are reasonable. The fan is found to meet the required pressure rise, however the fan total-to-static efficiency is found to be lower than estimated during the design process. The actuator disk model is found to under estimate the power consumption of the fan, however the actuator disk model does provide a reasonable estimate of the exit flow conditions as well as the total-to-static pressure characteristic of the fan.


Author(s):  
Bryan Nelson ◽  
Yann Quéméner

This study evaluated, by time-domain simulations, the fatigue lives of several jacket support structures for 4 MW wind turbines distributed throughout an offshore wind farm off Taiwan’s west coast. An in-house RANS-based wind farm analysis tool, WiFa3D, has been developed to determine the effects of the wind turbine wake behaviour on the flow fields through wind farm clusters. To reduce computational cost, WiFa3D employs actuator disk models to simulate the body forces imposed on the flow field by the target wind turbines, where the actuator disk is defined by the swept region of the rotor in space, and a body force distribution representing the aerodynamic characteristics of the rotor is assigned within this virtual disk. Simulations were performed for a range of environmental conditions, which were then combined with preliminary site survey metocean data to produce a long-term statistical environment. The short-term environmental loads on the wind turbine rotors were calculated by an unsteady blade element momentum (BEM) model of the target 4 MW wind turbines. The fatigue assessment of the jacket support structure was then conducted by applying the Rainflow Counting scheme on the hot spot stresses variations, as read-out from Finite Element results, and by employing appropriate SN curves. The fatigue lives of several wind turbine support structures taken at various locations in the wind farm showed significant variations with the preliminary design condition that assumed a single wind turbine without wake disturbance from other units.


2014 ◽  
Vol 524 ◽  
pp. 012144
Author(s):  
I O Sert ◽  
S C Cakmakcioglu ◽  
O Tugluk ◽  
N Sezer-Uzol

Author(s):  
Adam Koscso ◽  
E. P. Petrov

Abstract One of the major sources of the damping of the forced vibration for bladed disk structures is the micro-slip motion at the contact interfaces of blade-disk joints. In this paper, the modeling strategies of nonlinear contact interactions at blade roots are examined using high-fidelity modelling of bladed disk assemblies and the nonlinear contact interactions at blade-disk contact patches. The analysis is performed in the frequency domain using multiharmonic harmonic balance method and analytically formulated node-to-node contact elements modelling frictional and gap nonlinear interactions. The effect of the number, location and distribution of nonlinear contact elements are analyzed using cyclically symmetric bladed disks. The possibility of using the number of the contact elements noticeably smaller than the total number of nodes in the finite element mesh created at the contact interface for the high-fidelity bladed disk model is demonstrated. The parameters for the modeling of the root damping are analysed for tuned and mistuned bladed disks. The geometric shapes of blade roots and corresponding slots in disks cannot be manufactured perfectly and there is inevitable root joint geometry variability within the manufacturing tolerances. Based on these tolerances, the extreme cases of the geometry variation are defined and the assessment of the possible effects of the root geometry variation on the nonlinear forced response are performed based on a set of these extreme cases.


Sign in / Sign up

Export Citation Format

Share Document