Optimization of a wind farm by coupled actuator disk and mesoscale models to mitigate neighboring wind farm wake interference from repowering perspective

2021 ◽  
Vol 298 ◽  
pp. 117229
Author(s):  
Mehtab Ahmad Khan ◽  
Adeel Javed ◽  
Sehar Shakir ◽  
Abdul Haseeb Syed
Author(s):  
Bryan Nelson ◽  
Yann Quéméner

This study evaluated, by time-domain simulations, the fatigue lives of several jacket support structures for 4 MW wind turbines distributed throughout an offshore wind farm off Taiwan’s west coast. An in-house RANS-based wind farm analysis tool, WiFa3D, has been developed to determine the effects of the wind turbine wake behaviour on the flow fields through wind farm clusters. To reduce computational cost, WiFa3D employs actuator disk models to simulate the body forces imposed on the flow field by the target wind turbines, where the actuator disk is defined by the swept region of the rotor in space, and a body force distribution representing the aerodynamic characteristics of the rotor is assigned within this virtual disk. Simulations were performed for a range of environmental conditions, which were then combined with preliminary site survey metocean data to produce a long-term statistical environment. The short-term environmental loads on the wind turbine rotors were calculated by an unsteady blade element momentum (BEM) model of the target 4 MW wind turbines. The fatigue assessment of the jacket support structure was then conducted by applying the Rainflow Counting scheme on the hot spot stresses variations, as read-out from Finite Element results, and by employing appropriate SN curves. The fatigue lives of several wind turbine support structures taken at various locations in the wind farm showed significant variations with the preliminary design condition that assumed a single wind turbine without wake disturbance from other units.


Author(s):  
Suganthi Selvaraj ◽  
Anupam Sharma

A systematic analysis of a single-rotor horizontal axis wind turbine aerodynamics is performed to obtain a realistic potential maximum efficiency. It is noted that by including the effects of swirl, viscosity and finite number of blades, the maximum aerodynamic efficiency of a HAWT is within a few percentage points of the efficiency of commercially-available turbines. The need for investigating windfarm (as a unit) aerodynamics is thus highlighted. An actuator disk model is developed and implemented in the OpenFOAM software suite. The model is validated against 1-D momentum theory, blade element momentum theory, as well as against experimental data. The validated actuator disk model is then used to investigate an interesting microscale meteorological phenomenon called “flow convergence” caused by an array of wind turbines. This phenomenon is believed to be caused by the drop of pressure in wind farms. Wind farm numerical simulations are conducted with various approximations to investigate and explain the flow convergence phenomenon.


2018 ◽  
Author(s):  
Luis A. Martínez-Tossas ◽  
Jennifer Annoni ◽  
Paul A. Fleming ◽  
Matthew J. Churchfield

Abstract. When a wind turbine is yawed, the shape of the wake changes and a curled wake profile is generated. The curled wake has drawn a lot of interest because of its aerodynamic complexity and applicability to wind farm controls. The main mechanism for the creation of the curled wake has been identified in the literature as a collection of vortices that are shed from the rotor plane when the turbine is yawed. This work extends that idea by using aerodynamic concepts to develop a control-oriented model for the curled wake based on approximations to the Navier-Stokes equations. The model is tested and compared to large-eddy simulations using actuator disk and line models. The model is able to capture the curling mechanism for a turbine under uniform inflow and in the case of a neutral atmospheric boundary layer. The model is then tested inside the FLOw Redirection and Induction in Steady State framework and provides excellent agreement with power predictions for cases with two and three turbines in a row.


2021 ◽  
Author(s):  
Alfredo Peña ◽  
Jeffrey Mirocha

<p>Mesoscale models, such as the Weather Research and Forecasting (WRF) model, are now commonly used to predict wind resources, and in recent years their outputs are being used as inputs to wake models for the prediction of the production of wind farms. Also, wind farm parametrizations have been implemented in the mesoscale models but their accuracy to reproduce wind speeds and turbulent kinetic energy fields within and around wind farms is yet unknown. This is partly because they have been evaluated against wind farm power measurements directly and, generally, a lack of high-quality observations of the wind field around large wind farms. Here, we evaluate the in-built wind farm parametrization of the WRF model, the so-called Fitch scheme that works together with the MYNN2 planetary boundary layer (PBL) scheme against large-eddy simulations (LES) of wakes using a generalized actuator disk model, which was also implemented within the same WRF version. After setting both types of simulations as similar as possible so that the inflow conditions are nearly identical, preliminary results show that the velocity deficits can differ up to 50% within the same area (determined by the resolution of the mesoscale run) where the turbine is placed. In contrast, within that same area, the turbine-generated TKE is nearly identical in both simulations. We also prepare an analysis of the sensitivity of the results to the inflow wind conditions, horizontal grid resolution of both the LES and the PBL run, number of turbines within the mesoscale grid cells, surface roughness, inversion strength, and boundary-layer height.</p>


2019 ◽  
Vol 4 (1) ◽  
pp. 127-138 ◽  
Author(s):  
Luis A. Martínez-Tossas ◽  
Jennifer Annoni ◽  
Paul A. Fleming ◽  
Matthew J. Churchfield

Abstract. When a wind turbine is yawed, the shape of the wake changes and a curled wake profile is generated. The curled wake has drawn a lot of interest because of its aerodynamic complexity and applicability to wind farm controls. The main mechanism for the creation of the curled wake has been identified in the literature as a collection of vortices that are shed from the rotor plane when the turbine is yawed. This work extends that idea by using aerodynamic concepts to develop a control-oriented model for the curled wake based on approximations to the Navier–Stokes equations. The model is tested and compared to time-averaged results from large-eddy simulations using actuator disk and line models. The model is able to capture the curling mechanism for a turbine under uniform inflow and in the case of a neutral atmospheric boundary layer. The model is then incorporated to the FLOw Redirection and Induction in Steady State (FLORIS) framework and provides good agreement with power predictions for cases with two and three turbines in a row.


2021 ◽  
Author(s):  
Jana Fischereit ◽  
Roy Brown ◽  
Xiaoli Guo Larsén ◽  
Jake Badger ◽  
Graham Hawkes

<p>With the expansion of wind energy on- and offshore, large-scale wind farm flow effects in a temporal and spatially heterogeneous atmosphere become increasingly relevant. Mesoscale models equipped with a Wind Farm Parametrization (WFP) can be used to study these effects. In the past, different WFPs have been developed and were applied with different aims. The aim of this study is to provide a better overview on existing WFPs, their development stage and application areas. </p><p>Through a systematic literature review based approach, 617 potentially relevant publications were identified, out of which 59 were reviewed in detail. From these studies, 10 different explicit WFPs have been identified along with three main application areas: (1) the characterizations of wind farm flow effects, (2) the environmental impact of wind farms and (3) the implication for wind energy planning.</p><p>In this presentation, we will review differences between the identified WFPs including their description of the turbine-induced forces and turbulent kinetic energy production as well as their treatment of sub-grid scale effects. In addition, we will summarize the literature findings on existing validation of the WFPs and on the sensitivity of the WFPs to the mesoscale model set-up. Reviewing the results for the different application areas indicated that wind farm wakes can last for several 10s of kilometers downstream depending on stability, surface roughness and terrain. Therefore, neighbouring wind farms need to be taken into account for regional planning of wind energy. Yet, their environmental impact, in terms of other reviewed parameters than wind, is mostly confined to areas close to the farm.</p><p>Based on these findings, we suggest that future work should include, among other things, benchmark-type validation studies with long-term measurements for different WFPs, further developments of WFPs and mesoscale model physics and more interactions between the mesoscale and microscale community.</p>


2016 ◽  
Author(s):  
Andrew Ning

Abstract. Actuator cylinder theory is an effective approach for analyzing the aerodynamic performance of vertical axis wind turbines at a conceptual design level. Existing actuator cylinder theory can analyze single turbines, but analysis of multiple turbines is often desirable because turbines operate in near proximity within a wind farm. For vertical axis wind turbines, which tend to operate in closer proximity than do horizontal axis turbines, aerodynamic interactions may not be strictly confined to wake interactions. We modified actuator cylinder theory to permit the simultaneous solution of aerodynamic loading for any number of turbines. We also extended the theory to handle thrust coefficients outside of the momentum region, and explicitly defined the additional terms needed for curved or swept blades. It is found that even out of the wake zone, aerodynamic interactions are not negligible at typical separation distances (i.e., 3–6 rotor diameters). If turbines are co-rotating then for the two turbine cases examined in this paper the sum of the total power was effectively constant except within the wake zone. However, if turbines counter-rotate then both beneficial and detrimental changes in power production were observed depending on the relative positions. However, these benefits are on the order of a few percent and unlikely to be advantageous in practice because of wake interference, except for within highly directional wind sites. Limitations of these analyses identified the need for integration with viscous wake models, and potentially with higher-fidelity induced velocity models.


Author(s):  
Xing Xing Han ◽  
De You Liu ◽  
Chang Xu ◽  
Wen Zhong Shen ◽  
Lin Min Li ◽  
...  

Atmospheric stability affects wind turbine wakes significantly. High-fidelity approaches such as large eddy simulations (LES) with the actuator line (AL) model which predicts detailed wake structures, fail to be applied in wind farm engineering applications due to its expensive cost. In order to make wind farm simulations computationally affordable, this paper proposes a new actuator disk model (AD) based on the blade element method (BEM) and combined with Reynolds-averaged Navier–Stokes equations (RANS) to model turbine wakes under different atmospheric stability conditions. In the proposed model, the upstream reference velocity is firstly estimated from the disk averaged velocity based on the one-dimensional momentum theory, and then is used to evaluate the rotor speed to calculate blade element forces. Flow similarity functions based on field measurement are applied to limit wind shear under strongly stable conditions, and turbulence source terms are added to take the buoyant-driven effects into consideration. Results from the new AD model are compared with field measurements and results from the AD model based on the thrust coefficient, the BEM-AD model with classical similarity functions and a high-fidelity LES approach. The results show that the proposed method is better in simulating wakes under various atmospheric stability conditions than the other AD models and has a similar performance to the high-fidelity LES approach however in much lower computational cost.


2020 ◽  
Vol 8 (8) ◽  
pp. 610
Author(s):  
Yen-Cheng Chiang ◽  
Yu-Cheng Hsu ◽  
Shiu-Wu Chau

This paper aims to demonstrate a simplified nonlinear wake model that fills the technical gap between the low-cost and less-accurate linear formulation and the high-cost and high-accuracy large eddy simulation, to offer a suitable balance between the prediction accuracy and the computational cost, and also to establish a robust approach for long-term wind farm power prediction. A simplified actuator disk model based on the momentum theory is proposed to predict the wake interaction among wind turbines along with their power output. The three-dimensional flow field of a wind farm is described by the steady continuity and momentum equation coupled with a k-ε turbulence model, where the body force representing the aerodynamic impact of the rotor blade on the airflow is uniformly distributed in the Cartesian cells within the actuator disk. The characteristic wind conditions identified from the data of the supervisory control and data acquisition (SCADA) system were employed to build the power matrix of these typical wind conditions for reducing the computation demands to estimate the yearly power production. The proposed model was favorably validated with the offshore measurement of Horns Rev wind farm, and three Taiwanese onshore wind farms were forecasted for their yearly capacity factors with an average error less than 5%, where the required computational cost is estimated about two orders of magnitude smaller than that of the large eddy simulation. However, the proposed model fails to pronouncedly reproduce the individual power difference among wind turbines in the investigated wind farm due to its time-averaging nature.


Sign in / Sign up

Export Citation Format

Share Document