scholarly journals Solution of Dirac equation for modified Poschl Teller plus trigonometric Scarf potential using Romanovsky polynomials method

2016 ◽  
Vol 776 ◽  
pp. 012083 ◽  
Author(s):  
I. Prastyaningrum ◽  
C. Cari ◽  
A. Suparmi
2011 ◽  
Vol 3 (2) ◽  
pp. 239-247 ◽  
Author(s):  
M. Eshghi ◽  
H. Mehraban

We study the Dirac equation for the q-deformed hyperbolic Scarf potential including a coulomb-like tensor potential under the spin symmetry. The parametric generalization of the Nikiforov-Uvarov method is used to obtain the energy eigenvalues equation and the unnormalized wave functins.Keywords: Dirac equation; q-deformed hyperbolic Scarf; Spin symmetry; Tensor coupling.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i2.7295                 J. Sci. Res. 3 (2), 239-247 (2011)


2010 ◽  
Vol 25 (08) ◽  
pp. 1649-1659 ◽  
Author(s):  
GAO-FENG WEI ◽  
XIAO-YONG DUAN ◽  
XU-YANG LIU

By a simple algebraic approach we study the exact solution to the Dirac equation with scalar and vector trigonometric Scarf potentials in the case of spin symmetry. The transcendental energy equation and spinor wave functions are presented. It is found that there exist only positive energy bound states in the case of spin symmetry. Also, the energy eigenvalue approaches a constant when the potential parameter α goes to zero. The equally scalar and vector case is studied briefly.


2013 ◽  
Vol 58 (6) ◽  
pp. 523-533 ◽  
Author(s):  
V.M. Simulik ◽  
◽  
I.Yu. Krivsky ◽  
I.L. Lamer ◽  
◽  
...  

Author(s):  
І. І. Гайсак ◽  
В. С. Морохович

Author(s):  
Kenneth G. Dyall ◽  
Knut Faegri

This book provides an introduction to the essentials of relativistic effects in quantum chemistry, and a reference work that collects all the major developments in this field. It is designed for the graduate student and the computational chemist with a good background in nonrelativistic theory. In addition to explaining the necessary theory in detail, at a level that the non-expert and the student should readily be able to follow, the book discusses the implementation of the theory and practicalities of its use in calculations. After a brief introduction to classical relativity and electromagnetism, the Dirac equation is presented, and its symmetry, atomic solutions, and interpretation are explored. Four-component molecular methods are then developed: self-consistent field theory and the use of basis sets, double-group and time-reversal symmetry, correlation methods, molecular properties, and an overview of relativistic density functional theory. The emphases in this section are on the basics of relativistic theory and how relativistic theory differs from nonrelativistic theory. Approximate methods are treated next, starting with spin separation in the Dirac equation, and proceeding to the Foldy-Wouthuysen, Douglas-Kroll, and related transformations, Breit-Pauli and direct perturbation theory, regular approximations, matrix approximations, and pseudopotential and model potential methods. For each of these approximations, one-electron operators and many-electron methods are developed, spin-free and spin-orbit operators are presented, and the calculation of electric and magnetic properties is discussed. The treatment of spin-orbit effects with correlation rounds off the presentation of approximate methods. The book concludes with a discussion of the qualitative changes in the picture of structure and bonding that arise from the inclusion of relativity.


Sign in / Sign up

Export Citation Format

Share Document