scholarly journals Classification of breast cancer cytological specimen using convolutional neural network

2017 ◽  
Vol 783 ◽  
pp. 012060 ◽  
Author(s):  
Michał Żejmo ◽  
Marek Kowal ◽  
Józef Korbicz ◽  
Roman Monczak
2020 ◽  
Vol 14 ◽  
Author(s):  
Lahari Tipirneni ◽  
Rizwan Patan

Abstract:: Millions of deaths all over the world are caused by breast cancer every year. It has become the most common type of cancer in women. Early detection will help in better prognosis and increases the chance of survival. Automating the classification using Computer-Aided Diagnosis (CAD) systems can make the diagnosis less prone to errors. Multi class classification and Binary classification of breast cancer is a challenging problem. Convolutional neural network architectures extract specific feature descriptors from images, which cannot represent different types of breast cancer. This leads to false positives in classification, which is undesirable in disease diagnosis. The current paper presents an ensemble Convolutional neural network for multi class classification and Binary classification of breast cancer. The feature descriptors from each network are combined to produce the final classification. In this paper, histopathological images are taken from publicly available BreakHis dataset and classified between 8 classes. The proposed ensemble model can perform better when compared to the methods proposed in the literature. The results showed that the proposed model could be a viable approach for breast cancer classification.


2021 ◽  
Vol 9 (4) ◽  
pp. 29-38
Author(s):  
Oluwashola David Adeniji

Breast cancer is most prevalent among women around the world and Nigeria is no exception in this menace. The increased in survival rate is due to the dramatic advancement in the screening methods, early diagnosis, and discovery in cancer treatments. There is an improvement in different strategies of breast cancer classification. A model for   training   deep   neural networks   for classification   of   breast   cancer in histopathological images was developed in this study. However, this images are affected by data unbalance with the support of active learning. The output of the neural network on unlabeled samples was used to calculate weighted information entropy. It is utilized as uncertainty score for automatic selecting both samples with high and low confidence. A threshold   that   decays over iteration number is used   to   decide which high confidence samples should be concatenated with manually labeled samples and then used infine-tuning of convolutional neural network. The neural network was optionally trained using weighted cross-entropy loss to better cope with bias towards the majority class. The developed model was compared with the existing model. The accuracy level of 98.3% was achieved for the developed model while the existing model 93.97%. The accuracy gain of 4.33%. was achieved as performance in the prediction of breast cancer .  


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256500
Author(s):  
Maleika Heenaye-Mamode Khan ◽  
Nazmeen Boodoo-Jahangeer ◽  
Wasiimah Dullull ◽  
Shaista Nathire ◽  
Xiaohong Gao ◽  
...  

The real cause of breast cancer is very challenging to determine and therefore early detection of the disease is necessary for reducing the death rate due to risks of breast cancer. Early detection of cancer boosts increasing the survival chance up to 8%. Primarily, breast images emanating from mammograms, X-Rays or MRI are analyzed by radiologists to detect abnormalities. However, even experienced radiologists face problems in identifying features like micro-calcifications, lumps and masses, leading to high false positive and high false negative. Recent advancement in image processing and deep learning create some hopes in devising more enhanced applications that can be used for the early detection of breast cancer. In this work, we have developed a Deep Convolutional Neural Network (CNN) to segment and classify the various types of breast abnormalities, such as calcifications, masses, asymmetry and carcinomas, unlike existing research work, which mainly classified the cancer into benign and malignant, leading to improved disease management. Firstly, a transfer learning was carried out on our dataset using the pre-trained model ResNet50. Along similar lines, we have developed an enhanced deep learning model, in which learning rate is considered as one of the most important attributes while training the neural network. The learning rate is set adaptively in our proposed model based on changes in error curves during the learning process involved. The proposed deep learning model has achieved a performance of 88% in the classification of these four types of breast cancer abnormalities such as, masses, calcifications, carcinomas and asymmetry mammograms.


Sign in / Sign up

Export Citation Format

Share Document