scholarly journals Multi- class classification of breast cancer abnormalities using Deep Convolutional Neural Network (CNN)

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256500
Author(s):  
Maleika Heenaye-Mamode Khan ◽  
Nazmeen Boodoo-Jahangeer ◽  
Wasiimah Dullull ◽  
Shaista Nathire ◽  
Xiaohong Gao ◽  
...  

The real cause of breast cancer is very challenging to determine and therefore early detection of the disease is necessary for reducing the death rate due to risks of breast cancer. Early detection of cancer boosts increasing the survival chance up to 8%. Primarily, breast images emanating from mammograms, X-Rays or MRI are analyzed by radiologists to detect abnormalities. However, even experienced radiologists face problems in identifying features like micro-calcifications, lumps and masses, leading to high false positive and high false negative. Recent advancement in image processing and deep learning create some hopes in devising more enhanced applications that can be used for the early detection of breast cancer. In this work, we have developed a Deep Convolutional Neural Network (CNN) to segment and classify the various types of breast abnormalities, such as calcifications, masses, asymmetry and carcinomas, unlike existing research work, which mainly classified the cancer into benign and malignant, leading to improved disease management. Firstly, a transfer learning was carried out on our dataset using the pre-trained model ResNet50. Along similar lines, we have developed an enhanced deep learning model, in which learning rate is considered as one of the most important attributes while training the neural network. The learning rate is set adaptively in our proposed model based on changes in error curves during the learning process involved. The proposed deep learning model has achieved a performance of 88% in the classification of these four types of breast cancer abnormalities such as, masses, calcifications, carcinomas and asymmetry mammograms.

2020 ◽  
Author(s):  
Zicheng Hu ◽  
Alice Tang ◽  
Jaiveer Singh ◽  
Sanchita Bhattacharya ◽  
Atul J. Butte

AbstractCytometry technologies are essential tools for immunology research, providing high-throughput measurements of the immune cells at the single-cell level. Traditional approaches in interpreting and using cytometry measurements include manual or automated gating to identify cell subsets from the cytometry data, providing highly intuitive results but may lead to significant information loss, in that additional details in measured or correlated cell signals might be missed. In this study, we propose and test a deep convolutional neural network for analyzing cytometry data in an end-to-end fashion, allowing a direct association between raw cytometry data and the clinical outcome of interest. Using nine large CyTOF studies from the open-access ImmPort database, we demonstrated that the deep convolutional neural network model can accurately diagnose the latent cytomegalovirus (CMV) in healthy individuals, even when using highly heterogeneous data from different studies. In addition, we developed a permutation-based method for interpreting the deep convolutional neural network model and identified a CD27-CD94+ CD8+ T cell population significantly associated with latent CMV infection. Finally, we provide a tutorial for creating, training and interpreting the tailored deep learning model for cytometry data using Keras and TensorFlow (github.com/hzc363/DeepLearningCyTOF).


Author(s):  
Syed Farhan Hyder Abidi

India accounts for the world’s largest number of cases in TB, with 2.8 million cases annually, and accounts for more than a quarter of the global TB burden. Tuberculosis (TB) is caused by the bacterium (Mycobacterium tuberculosis) which most commonly affects the lungs. TB is transmitted from person to person through the air. When people with TB cough, sneeze or spit, the germs are propelled into the air. This paper showcases a methodology which uses a Deep Learning Model (dCNN) for the detection of Tuberculosis in the lungs. The accuracy obtained by the methods for the model is desirable and dependable, which is increasingly productive in contrast to the accuracy shown by other neural networks.


2020 ◽  
Vol 117 (35) ◽  
pp. 21373-21380
Author(s):  
Zicheng Hu ◽  
Alice Tang ◽  
Jaiveer Singh ◽  
Sanchita Bhattacharya ◽  
Atul J. Butte

Cytometry technologies are essential tools for immunology research, providing high-throughput measurements of the immune cells at the single-cell level. Existing approaches in interpreting and using cytometry measurements include manual or automated gating to identify cell subsets from the cytometry data, providing highly intuitive results but may lead to significant information loss, in that additional details in measured or correlated cell signals might be missed. In this study, we propose and test a deep convolutional neural network for analyzing cytometry data in an end-to-end fashion, allowing a direct association between raw cytometry data and the clinical outcome of interest. Using nine large cytometry by time-of-flight mass spectrometry or mass cytometry (CyTOF) studies from the open-access ImmPort database, we demonstrated that the deep convolutional neural network model can accurately diagnose the latent cytomegalovirus (CMV) in healthy individuals, even when using highly heterogeneous data from different studies. In addition, we developed a permutation-based method for interpreting the deep convolutional neural network model. We were able to identify a CD27- CD94+ CD8+ T cell population significantly associated with latent CMV infection, confirming the findings in previous studies. Finally, we provide a tutorial for creating, training, and interpreting the tailored deep learning model for cytometry data using Keras and TensorFlow (https://github.com/hzc363/DeepLearningCyTOF).


Author(s):  
Nicole P. Mugova ◽  
Mohammed M. Abdelsamea ◽  
Mohamed M. Gaber

Covid-19 is a growing issue in society and there is a need for resources to manage the disease. This paper looks at studying the effect of class decomposition in our previously proposed deep Convolutional Neural Network, called DeTraC (Decompose, Transfer and Compose). DeTraC has the ability to robustly detect and predict Covid-19 from chest X-ray images. The experimental results showed that changing the number of clusters affected the performance of DeTraC and influenced the accuracy of the model. As the number of clusters increased, the accuracy decreased for the shallow tuning mode but increased for the deep tuning mode. This shows the importance of using suitable hyperparameter settings in order to get the best results from a deep learning model. The highest accuracy obtained, in this study, was 98.33% from the deep tuning model.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2012
Author(s):  
Jiameng Gao ◽  
Chengzhong Liu ◽  
Junying Han ◽  
Qinglin Lu ◽  
Hengxing Wang ◽  
...  

Wheat is a very important food crop for mankind. Many new varieties are bred every year. The accurate judgment of wheat varieties can promote the development of the wheat industry and the protection of breeding property rights. Although gene analysis technology can be used to accurately determine wheat varieties, it is costly, time-consuming, and inconvenient. Traditional machine learning methods can significantly reduce the cost and time of wheat cultivars identification, but the accuracy is not high. In recent years, the relatively popular deep learning methods have further improved the accuracy on the basis of traditional machine learning, whereas it is quite difficult to continue to improve the identification accuracy after the convergence of the deep learning model. Based on the ResNet and SENet models, this paper draws on the idea of the bagging-based ensemble estimator algorithm, and proposes a deep learning model for wheat classification, CMPNet, which is coupled with the tillering period, flowering period, and seed image. This convolutional neural network (CNN) model has a symmetrical structure along the direction of the tensor flow. The model uses collected images of different types of wheat in multiple growth periods. First, it uses the transfer learning method of the ResNet-50, SE-ResNet, and SE-ResNeXt models, and then trains the collected images of 30 kinds of wheat in different growth periods. It then uses the concat layer to connect the output layers of the three models, and finally obtains the wheat classification results through the softmax function. The accuracy of wheat variety identification increased from 92.07% at the seed stage, 95.16% at the tillering stage, and 97.38% at the flowering stage to 99.51%. The model’s single inference time was only 0.0212 s. The model not only significantly improves the classification accuracy of wheat varieties, but also achieves low cost and high efficiency, which makes it a novel and important technology reference for wheat producers, managers, and law enforcement supervisors in the practice of wheat production.


2021 ◽  
Vol 2 (1) ◽  
pp. 06-11
Author(s):  
Suriani Alamgunawan ◽  
Yosi Kristian

Convolutional Neural Network sebagai salah satu metode Deep Learning yang paling sering digunakan dalam klasifikasi, khususnya pada citra. Terkenal dengan kedalaman dan kemampuan dalam menentukan parameter sendiri, yang memungkinkan CNN mampu mengeksplor citra tanpa batas. Tujuan penelitian ini adalah untuk meneliti klasifikasi tekstur serat kayu pada citra mikroskopik veneer dengan CNN. Model CNN akan dibangun menggunakan MBConv dan arsitektur lapisan akan didesain menggunakan EfficientNet. Diharapkan  dapat tercapai tingkat akurasi yang tinggi dengan penggunaan jumlah parameter yang sedikit. Dalam penelitian ini akan mendesain empat model arsitektur CNN, yaitu model RGB tanpa contrast stretching, RGB dengan contrast stretching, Grayscale tanpa contrast stretching dan Grayscale dengan contrast stretching. Proses ujicoba akan mencakup proses pelatihan, validasi dan uji pada masing-masing input citra pada setiap model arsitektur. Dengan menggunakan penghitungan softmax sebagai penentu kelas klasifikasi. SGD optimizer digunakan sebagai optimization dengan learning rate 1e-1. Hasil penelitian akan dievaluasi dengan menghitung akurasi dan error dengan menggunakan metode F1-score. Penggunaan channel RGB tanpa contrast stretching sebagai citra input menunjukkan hasil uji coba yang terbaik.


Sign in / Sign up

Export Citation Format

Share Document