scholarly journals Improvement of levitation force characteristics in magnetic levitation type seismic isolation device composed of HTS bulk and permanent magnet

2008 ◽  
Vol 97 ◽  
pp. 012104 ◽  
Author(s):  
M Tsuda ◽  
T Kawasaki ◽  
T Yagai ◽  
T Hamajima
2013 ◽  
Vol 721 ◽  
pp. 278-281
Author(s):  
Jun Ma

t has been investigated that the interaction force in hybrid magnetic levitation systems with two GdBCO bulk superconductors and two permanent magnets system and a cubic permanent magnet (PM2) and a cubic permanent magnet (PM3) system in their coaxial configuration at liquid nitrogen temperature. The two single-domain GdBCO samples are of φ20mm and 10mm in thickness, the permanent magnet PM1 is of rectangular parallelepiped shape, the permanent magnets PM2 and PM3 are of cubic shape; the system placed on the middle of system and their coaxial configuration; It is found that the maximum levitation force decreases from 40.6N to 17.8N while the distance (Dpp) between the permanent magnets is increased from 0mm to 24mm and the distance (Dsp) between the two GdBCO bulk superconductors and a cubic permanent magnet PM3 is 0mm, The results indicate that the higher levitation force can be obtained by introducing PM-PM levitation system based on scientific and reasonable design of the hybrid magnetic levitation system, which is helpful for designing and constructing superconducting magnetic levitation systems.


2017 ◽  
Vol 189 (1-2) ◽  
pp. 42-52 ◽  
Author(s):  
Huan Huang ◽  
Jun Zheng ◽  
Botian Zheng ◽  
Nan Qian ◽  
Haitao Li ◽  
...  

2013 ◽  
Vol 750-752 ◽  
pp. 987-990
Author(s):  
Jun Ma

It has been investigated that the interaction force in hybrid magnetic levitation systems with a GdBCO bulk superconductor and a permanent magnet system and two permanent magnets (PM2) and two cubic permanent magnets (PM3) system in their coaxial configuration at liquid nitrogen temperature. A single-domain GdBCO sample is of 20mm and 10mm in thickness, the permanent magnet PM1 is of rectangular parallelepiped shape, the permanent magnets PM2 and PM3 are of cubic shape; the system placed on the middle of system and their coaxial configuration; It is found that the maximum levitation force decreases from 46.3N to 16.3N while the horizontal distance (Dpp) between the rectangle permanent magnet and two cubic permanent magnets (PM2) is increased from 0mm to 24mm and the horizontal distance (Dsp) between a GdBCO bulk superconductor and two cubic permanent magnets (PM3) is 0mm, The results indicate that the higher levitation force can be obtained by introducing PM-PM levitation system based on scientific and reasonable design of the hybrid magnetic levitation system, which is helpful for designing and constructing superconducting magnetic levitation systems.


2019 ◽  
Author(s):  
James Storey ◽  
Mathieu Szmigiel ◽  
Fergus Robinson ◽  
Stuart C. Wimbush ◽  
Rod Badcock

High-speed superconducting motors and generators<br>stand to benefit from superconductor magnetic levitation bearings if their stiffness characteristics can be improved. Here we investigate a novel thrust bearing geometry, comprising a conical frustum shaped permanent magnet and matching superconducting toroid and puck assembly, aimed at producing high stiffness coupled with high levitation force. To this end, we have constructed a bearing test rig enabling measurements of the levitation force and stiffness of the assembly of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-d</sub> melt-textured bulks and Nd<sub>2</sub>Fe<sub>14</sub>B permanent magnet at temperatures down to 47 K. The experimental results are supported by finite element modeling that is validated against the experiment, and used to quantify the advantages of this configuration over a conventional cylindrical magnet and HTS puck arrangement.<br>For axial displacements, the assembly produces higher and more consistent stiffness together with stronger restoring forces. For lateral displacements, the assembly produces up to double the lateral force and up to four times the stiffness. Our study also shows that the force contribution to the assembly from the small inner puck is negligible and it can therefore be eliminated from the bearing design.


2003 ◽  
Vol 16 (4) ◽  
pp. 527-533 ◽  
Author(s):  
J J Wang ◽  
C Y He ◽  
L F Meng ◽  
C Li ◽  
R S Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document