Self-assembly model, hepatocytes attachment and inflammatory response for silk fibroin/chitosan scaffolds

2009 ◽  
Vol 4 (4) ◽  
pp. 045014 ◽  
Author(s):  
Zhending She ◽  
Weiqiang Liu ◽  
Qingling Feng
2012 ◽  
Vol 9 (1) ◽  
pp. 22-25
Author(s):  
S.V. Amel’kin ◽  
D.Ye. Igoshin

A self-assembly model for porous hydrate structures is proposed, which takes into account the sequence of basic physical processes: hydrate growth on the surface of the aqueous solution, formation of islet structure, capillary flow, separation and transfer of secondary crystallization nuclei to the meniscus. The model was studied within the cellular automata method. A good correspondence between the results of the simulation and the experimental data is obtained.


Biomaterials ◽  
2011 ◽  
Vol 32 (4) ◽  
pp. 1059-1067 ◽  
Author(s):  
Qiang Lu ◽  
Xiuli Wang ◽  
Shenzhou Lu ◽  
Mingzhong Li ◽  
David L. Kaplan ◽  
...  

2012 ◽  
Vol 465 ◽  
pp. 160-164 ◽  
Author(s):  
Li Mao ◽  
Yu Liu ◽  
Xi Long Wu ◽  
Shen Zhou Lu

Regenerated Antheraea Pernyi silk fibroin (ASF) solution was prepared by dissolving Antheraea Pernyi (A. pernyi) silk fiber in lithium thiocyanate solution. Atomic force microscopy (AFM) examination showed that there were many short nanofibers in regenerated ASF solution, which were made up of 10-20 nm nanospheres. In this paper, we discussed the formation mechanism of these nanofibers. The results of the surface tension showed that ASF had surface active and can significantly decline the surface tension of water from 73 mN/m to 51 mN/m. The hydrophobic side chains of ASF molecular would try to break away from water environment and thereby undergo self-assembly into nanospheres. And then, these nanospheres arrange into a short nanofiber. Then, the ASF nanofiber film was prepared by casting regenerated ASF solution blended with glycol. The structure of ASF was β-sheet and the film was water-insoluble. This blend film not only had excellent mechanical properties, but also can be biodegradated by enzyme in vitro. All of this indicated that this new regenerated ASF nanofiber film not only provided excellent biocompatibility, but also had large surface as extracellular matrix (ECM) to cell adhesion. The film made of nanofiber was similar to ECM on the nanoscale, which promoted cell migration and proliferation. In summary, it provided a great potential as a biological material.


RSC Advances ◽  
2015 ◽  
Vol 5 (81) ◽  
pp. 65684-65689 ◽  
Author(s):  
Fan Xu ◽  
Meimei Bao ◽  
Longfei Rui ◽  
Jiaojiao Liu ◽  
Jingliang Li ◽  
...  

A self-assembled lipid membrane provides a smooth, hydrophilic and biocompatible surface coating film for materials.


PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0216253
Author(s):  
Angel Mozo-Villarías ◽  
Enrique Querol

Sign in / Sign up

Export Citation Format

Share Document