Self-assembly of monolayered lipid membranes for surface-coating of a nanoconfined Bombyx mori silk fibroin film

RSC Advances ◽  
2015 ◽  
Vol 5 (81) ◽  
pp. 65684-65689 ◽  
Author(s):  
Fan Xu ◽  
Meimei Bao ◽  
Longfei Rui ◽  
Jiaojiao Liu ◽  
Jingliang Li ◽  
...  

A self-assembled lipid membrane provides a smooth, hydrophilic and biocompatible surface coating film for materials.

2013 ◽  
Vol 51 (9) ◽  
pp. 742-748 ◽  
Author(s):  
Mingying Yang ◽  
Wen He ◽  
Yajun Shuai ◽  
Sijia Min ◽  
Liangjun Zhu

2016 ◽  
Vol 17 (9) ◽  
pp. 1517 ◽  
Author(s):  
Tetsuo Asakura ◽  
Masanori Endo ◽  
Misaki Hirayama ◽  
Hiroki Arai ◽  
Akihiro Aoki ◽  
...  

2011 ◽  
Vol 47 (37) ◽  
pp. 10296 ◽  
Author(s):  
Jinming Zhang ◽  
Ruiwen Hao ◽  
Lei Huang ◽  
Jinrong Yao ◽  
Xin Chen ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4106
Author(s):  
Hidetoshi Teramoto ◽  
Minori Shirakawa ◽  
Yasushi Tamada

Silk fibroin produced by the domesticated silkworm, Bombyx mori, has been studied widely as a substrate for tissue engineering applications because of its mechanical robustness and biocompatibility. However, it is often difficult to precisely tune silk fibroin’s biological properties due to the lack of easy, reliable, and versatile methodologies for decorating it with functional molecules such as those of drugs, polymers, peptides, and enzymes necessary for specific applications. In this study we applied an azido-functionalized silk fibroin, AzidoSilk, produced by a state-of-the-art biotechnology, genetic code expansion, to produce silk fibroin decorated with cell-repellent polyethylene glycol (PEG) chains for controlling the cell adhesion property of silk fibroin film. Azido groups can act as selective handles for chemical reactions such as a strain-promoted azido-alkyne cycloaddition (SPAAC), known as a click chemistry reaction. We found that azido groups in AzidoSilk film were selectively decorated with PEG chains using SPAAC. The PEG-decorated film demonstrated decreased cell adhesion depending on the lengths of the PEG chains. Azido groups in AzidoSilk can be decomposed by UV irradiation. By partially decomposing azido groups in AzidoSilk film in a spatially controlled manner using photomasks, cells could be spatially arranged on the film. These results indicated that SPAAC could be an easy, reliable, and versatile methodology to produce silk fibroin substrates having adequate biological properties.


Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Damian Dziubak ◽  
Kamil Strzelak ◽  
Slawomir Sek

Supported lipid membranes are widely used platforms which serve as simplified models of cell membranes. Among numerous methods used for preparation of planar lipid films, self-assembly of bicelles appears to be promising strategy. Therefore, in this paper we have examined the mechanism of formation and the electrochemical properties of lipid films deposited onto thioglucose-modified gold electrodes from bicellar mixtures. It was found that adsorption of the bicelles occurs by replacement of interfacial water and it leads to formation of a double bilayer structure on the electrode surface. The resulting lipid assembly contains numerous defects and pinholes which affect the permeability of the membrane for ions and water. Significant improvement in morphology and electrochemical characteristics is achieved upon freeze–thaw treatment of the deposited membrane. The lipid assembly is rearranged to single bilayer configuration with locally occurring patches of the second bilayer, and the number of pinholes is substantially decreased. Electrochemical characterization of the lipid membrane after freeze–thaw treatment demonstrated that its permeability for ions and water is significantly reduced, which was manifested by the relatively high value of the membrane resistance.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Traian V. Chirila

Fibroin is a fibrous protein that can be conveniently isolated from the silk cocoons produced by the larvae of Bombyx mori silk moth. In its form as a hydrogel, Bombyx mori silk fibroin (BMSF) has been employed in a variety of biomedical applications. When used as substrates for biomaterial-cells constructs in tissue engineering, the oxygen transport characteristics of the BMSF membranes have proved so far to be adequate. However, over the past three decades the BMSF hydrogels have been proposed episodically as materials for the manufacture of contact lenses, an application that depends on substantially elevated oxygen permeability. This review will show that the literature published on the oxygen permeability of BMSF is both limited and controversial. Additionally, there is no evidence that contact lenses made from BMSF have ever reached commercialization. The existing literature is discussed critically, leading to the conclusion that BMSF hydrogels are unsuitable as materials for contact lenses, while also attempting to explain the scarcity of data regarding the oxygen permeability of BMSF. To the author’s knowledge, this review covers all publications related to the topic.


1992 ◽  
Vol 46 (1) ◽  
pp. 49-53 ◽  
Author(s):  
Tetsuo Asakura ◽  
Motohiro Kitaguchi ◽  
Makoto Demura ◽  
Harutoshi Sakai ◽  
Keiichi Komatsu

Sign in / Sign up

Export Citation Format

Share Document