capillary flows
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 16)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Vol 413 ◽  
pp. 77-83
Author(s):  
Hassan Soleimani ◽  
Hassan Ali ◽  
Noorhana Yahya ◽  
Leila Khodapanah ◽  
Maziyar Sabet ◽  
...  

The continuing depletion of light oil supplies and the rapidly growing demand for energy are forcing oil and gas companies to explore unconventional oil extraction techniques. The structure and flow rate implies an impact on the trapping and mobilization of oil in the reservoir. This article studies the effect of pore geometry and dynamics on water-oil displacement as a two-phase flow system. The pore geometries of sandstone were extracted using the non-destructive 3D micro computational tomography (micro-CT) technique. Two-phase flow simulations were performed using COMSOL Multiphysics on the micro-CT images to show the effect of the capillary number and the flow pattern. Velocity and relative permeability of the non-wetting phase at different points of the porous structure was computed. The effect of viscosity of wetting fluid on the pore structure was also studied to evaluate the parameters affecting enhanced oil recovery (EOR).


Author(s):  
Xuewei Zhang ◽  
Sylvie Lorente

Abstract Capillary flows are an attractive feature for passive water harvesting as they require no external driving force to pull the fluid out within the capillary network. Here we analyze the architecture of capillary flow networks in steady state, and the impact of the network morphology on the maximum mass flow rate that can be extracted for a fixed network volume and fixed network footprint. We develop a search algorithm to test the possible location of all the junction and bifurcation nodes and the changes in diameter ratios with the objective of obtaining the maximum mass flow rate from the network. We define the Capillary Strength CS as a local indicator to determine the geometrical parameters of each conduct that allow to sustain the overall mass flow rate. It is shown that the diameter ratio of connected tubes for maximum mass flow rate depends on the distance from the network outlet, and therefore does not follow the Hess-Murray’s law. The superiority of dendritic architectures in the roots and canopy branches of the capillary trees is demonstrated.


Author(s):  
Steffen M. Recktenwald ◽  
Katharina Graessel ◽  
Felix M. Maurer ◽  
Thomas John ◽  
Stephan Gekle ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin Young Kim ◽  
Marta Gonçalves ◽  
Narina Jung ◽  
Hyoungsoo Kim ◽  
Byung Mook Weon

AbstractColloidal droplets on flat solid substrates commonly leave symmetric ring-like deposits due to coffee-ring flows during evaporation. On inclined substrates, droplet shapes may become asymmetric by gravity. On this basis, it is not clear how their evaporation dynamics and final deposits are changed depending on inclination. Here we explore evaporation and deposition dynamics of colloidal droplets on inclined substrates, mainly by controlling colloidal particle size, substrate inclination, and relative humidity, which are crucial to gravitational intervention and evaporation dynamics. We experimentally investigate two different flows with opposite directions: downward sedimentation flows by gravity ($$v_s$$ v s ) and upward capillary flows by evaporation ($$v_c$$ v c ). We find that the competition of two flows determines the formation of final deposits with a flow speed ratio of $$\alpha = v_s/v_c$$ α = v s / v c . Notably, for $$\alpha$$ α $$\ll$$ ≪ 1, evaporation-driven upward flows overwhelm sedimentation-driven downward flows, resulting in accentuated particle movement towards the top ring, which seems to defy gravitational intervention. We suggest a possible explanation for the flow speed dependence of final deposits in evaporating colloidal droplets. This study offers a framework to understand the intervention of inclination to the formation of final deposits and how to overcome the deposit pattern radial asymmetry, achieving symmetric deposit widths from inclined colloidal droplets.


2021 ◽  
Vol 925 ◽  
Author(s):  
Patrick K. Mortimer ◽  
Andrew W. Woods

We consider the release of preferentially wetting fluid in a laterally extensive V-shaped channel initially filled with a second fluid, presenting solutions for the initial exchange flow and the late time spreading of the wetting fluid along the narrow part of the channel. We also show that, if there is a buoyancy force acting in the cross-channel direction, the early time exchange flow depends on the Bond number, and the intermediate time slumping flow may initially be dominated by buoyancy, but at long times becomes controlled by capillarity. Where there is an along-channel component of gravity we show that the flow spreads out downslope, with capillarity controlling the structure of the nose. We then consider the case where the channel is connected to a reservoir of wetting fluid at constant pressure. We show that, depending on this pressure, either a zero flux exchange flow develops, or a net inflow through the whole width of the channel develops, as in the classical Washburn, Lucas, Bell and Cameron capillary imbibition flow. We show these flows are analogous to the classical model for one-dimensional capillary driven flows in porous media, with the current width in the channel corresponding to the saturation in the pore space.


Author(s):  
Kseniia A. BORODINA

Studying the processes occurring in liquid films under thermal influence allows improving a variety of technological systems, since a thin layer aids in providing a high intensity of heat and mass transfer and a significant surface of phase contact with a minimum liquid consumption. Many Russian and international works wrote about theoretical and experimental studies of film flows, though paid insufficient attention to the study of the behavior of films of a binary homogeneous solution. This article studies the behavior of a thin liquid film containing a volatile component during local heating of a solid horizontal substrate. The presented calculations were performed for an aqueous solution of isopropanol. The author describes the formation of a specific surface shape, which is formed with a sufficient increase in the substrate temperature and the initial film thickness — the so-called “liquid drop”, separated from the main volume of the liquid by a thin extended layer, which is explained by the sequential occurrence of thermal and concentration-capillary flows. The results show a significant influence of the Laplace pressure jump on the character of the entire process. In addition, the cooling of the substrate leads to multidirectional flows, but in the opposite directions. The analysis of the functions of the temperature of the film free surface, the volatile component concentration in the solution, and the vapor density over the free surface at different times is carried out. The velocity field in liquid and gas during the evolution of thermocapillary and concentration-capillary flows is illustrated.


Author(s):  
Bohua Sun

Among the best-known capillarity phenomena is a capillary rise, the understanding of which is essential in fluidics. Some capillary flows rise monotonically whereas others oscillate, but until now no criteria have been formulated for this scenario. In this paper, the Levine's capillary rise modelling is computed numerically, then the critical radius of the capillary tube is formulated by using the dimensional method and data fitting for identification of exponent index. The phase space diagram of capillary velocity versus height is obtained for the first time and shows that the phase transition from oscillating to monotonic rising happens when the phase trajectory decreases exponentially to somewhere other than the "attractor." Two general Maple codes of the problem are provided as an essential part of this paper.


Sign in / Sign up

Export Citation Format

Share Document