Promotion of osteointegration by silk fibroin coating under diabetic conditions on 3D printed porous titanium implants via ROS-mediated NF-κB pathway

Author(s):  
Xiang-Yu Ma ◽  
Tian-Cheng Ma ◽  
Ya-Fei Feng ◽  
Geng Xiang ◽  
Wei Lei ◽  
...  
2018 ◽  
Vol 6 (15) ◽  
pp. 2274-2288 ◽  
Author(s):  
Xiao-Fan Hu ◽  
Ya-Fei Feng ◽  
Geng Xiang ◽  
Wei Lei ◽  
Lin Wang

PLGA-coating on 3D-printed porous titanium implants promoted the angiogenesis and osteointegration at bone-implant interface in diabetes by releasing lactic acid.


2020 ◽  
Vol 383 ◽  
pp. 125192 ◽  
Author(s):  
Igor V. Smirnov ◽  
Roman V. Deev ◽  
Ilya I. Bozo ◽  
Alexander Yu. Fedotov ◽  
Alex N. Gurin ◽  
...  

2020 ◽  
Vol 15 (3) ◽  
pp. 035017 ◽  
Author(s):  
F Razzi ◽  
L E Fratila-Apachitei ◽  
N Fahy ◽  
Y M Bastiaansen-Jenniskens ◽  
I Apachitei ◽  
...  

2018 ◽  
Vol 6 (20) ◽  
pp. 3254-3261 ◽  
Author(s):  
Shuang Wang ◽  
Ruiyan Li ◽  
Dongdong Li ◽  
Zhi-Yong Zhang ◽  
Guancong Liu ◽  
...  

Strontium ion incorporated zeolites are uniformly fabricated on a 3D printed porous titanium scaffold for bone ingrowth.


2020 ◽  
pp. 112070002094348
Author(s):  
Rashid Tikhilov ◽  
Igor Shubnyakov ◽  
Alexey Denisov ◽  
Vladimir Konev ◽  
Iosif Gofman ◽  
...  

Introduction: Due to a lack of uniform shapes and sizes of bone defects in hip and knee joint pathology, their fixing could benefit from using individually manufactured 3D-printed highly porous titanium implants. The objective of this study was to evaluate the extent of bone and muscle tissue integration into porous titanium implants manufactured using additive technology. Materials and methods: Porous and non-porous titanium plates were implanted into the latissimus dorsi muscle and tibia of 9 rabbits. On days 1, 60 and 90 animals were examined with x-rays. On day 60 histological tests were carried out. On day 90 the tensile strength at the implant-tissue interface was tested. Results: Histological analysis of muscle samples with porous titanium implants showed integration of connective tissue and blood vessels into the pores. Bone defect analysis demonstrated bone ingrowth into the pores of titanium with a minimal amount of fibrous tissue. The tensile strength of the muscular tissue attachment to the porous titanium was 28 (22–30) N which was higher than that of the control group 8.5 (5–11) N. Bone tissue attachment strength was 148 (140–152) N in the experimental group versus 118 (84–122) N in the control group. Conclusions: Using additive technology in manufacturing 3D-printed highly porous titanium implants improves bone and muscle integration compared with the non-porous material of the control group. This could be a promising approach to bone defect repair in revision and reconstruction surgery.


2019 ◽  
Vol 7 (17) ◽  
pp. 2865-2877 ◽  
Author(s):  
Ping Song ◽  
Cheng Hu ◽  
Xuan Pei ◽  
Jianxun Sun ◽  
Huan Sun ◽  
...  

The macro architecture and micro surface topological morphology of implants play essential roles in bone tissue regeneration.


2017 ◽  
Vol 58 ◽  
pp. 550-560 ◽  
Author(s):  
Anish Shivaram ◽  
Susmita Bose ◽  
Amit Bandyopadhyay

2017 ◽  
Vol 2 (3) ◽  
pp. 2473011417S0000
Author(s):  
Samuel Adams ◽  
Travis Dekker ◽  
John Steele ◽  
Kamran Hamid

Category: Ankle,Ankle Arthritis,Basic Sciences/Biologics,Trauma Introduction/Purpose: Large lower extremity bony defects, complex foot and ankle deformities, and high-risk arthrodesis situations can be difficult to treat. These challenging pathologies, often require a critical-sizes and/or shaped structural bone void filler which may not be available with allograft bone. The advancement of 3D printing technology has allowed for the use of custom designed implants for foot and ankle surgery. This study reports on the radiographic and functional outcomes of a case series of patients treated with patient-specific 3D printed titanium implants. Methods: Seven consecutive patients who were treated with custom designed 3D printed implant cages for severe bone loss, deformity correction, and arthrodesis procedures were included in this study. A minimum of 1-year follow-up was required. No patients were lost to follow-up. Patients completed preoperative and most recent follow-up VAS for pain, FAAM, and SF-36 outcomes questionnaires. All patients had post-operative radiographs and CT scans to assess bony incorporation. Results: The mean age of these patients was 54.6 (35-73 years of age). The mean follow-up of these seven patients was 17.1 months (range 12 to 31). Radiographic fusion with cage ingrowth and integration occurred in all seven patients verified by CT scan. There was statistically significant improvement in all functional outcome score measures (VAS for pain, FAAM, and SF-36). All patients returned were satisfied with surgery. There were no failures. Case examples are demonstrated in Figure 1. Conclusion: This cohort of patients demonstrated the successful use of custom 3D printed implants to treat complex large bony defects, deformities and arthrodesis procedures of the lower extremity. These implants offer the surgeon a patient specific approach to treat both pain and deformity that is not necessarily available with allograft bone.


Sign in / Sign up

Export Citation Format

Share Document