Fabrication of bioactive 3D printed porous titanium implants with Sr ion-incorporated zeolite coatings for bone ingrowth

2018 ◽  
Vol 6 (20) ◽  
pp. 3254-3261 ◽  
Author(s):  
Shuang Wang ◽  
Ruiyan Li ◽  
Dongdong Li ◽  
Zhi-Yong Zhang ◽  
Guancong Liu ◽  
...  

Strontium ion incorporated zeolites are uniformly fabricated on a 3D printed porous titanium scaffold for bone ingrowth.

2018 ◽  
Vol 6 (15) ◽  
pp. 2274-2288 ◽  
Author(s):  
Xiao-Fan Hu ◽  
Ya-Fei Feng ◽  
Geng Xiang ◽  
Wei Lei ◽  
Lin Wang

PLGA-coating on 3D-printed porous titanium implants promoted the angiogenesis and osteointegration at bone-implant interface in diabetes by releasing lactic acid.


2020 ◽  
Vol 383 ◽  
pp. 125192 ◽  
Author(s):  
Igor V. Smirnov ◽  
Roman V. Deev ◽  
Ilya I. Bozo ◽  
Alexander Yu. Fedotov ◽  
Alex N. Gurin ◽  
...  

2007 ◽  
Vol 330-332 ◽  
pp. 967-970 ◽  
Author(s):  
B. Otsuki ◽  
Mitsuru Takemoto ◽  
Shunsuke Fujibayashi ◽  
Masashi Neo ◽  
Tadashi Kokubo ◽  
...  

A porous structure comprises pores and pore throats with a complex three-dimensional network structure, and many investigators have described the relationship between average pore size and the amount of bone ingrowth. However, the influence of network structure or pore throats for tissue ingrowth has rarely been discussed. Bioactive porous titanium implants with 48% porosity were analyzed using specific algorithms for three-dimensional analysis of interconnectivity based on a micro focus X-ray computed tomography system. In vivo histological analysis was performed using the very same implants implanted into the femoral condyles of male rabbits for 6 weeks. This matching study revealed that more poorly differentiated pores tended to have narrow pore throats, especially in their shorter routes to the outside. Data obtained suggest that this sort of novel analysis is useful for evaluating bone and tissue ingrowth into porous biomaterials.


2020 ◽  
Vol 15 (3) ◽  
pp. 035017 ◽  
Author(s):  
F Razzi ◽  
L E Fratila-Apachitei ◽  
N Fahy ◽  
Y M Bastiaansen-Jenniskens ◽  
I Apachitei ◽  
...  

2020 ◽  
pp. 112070002094348
Author(s):  
Rashid Tikhilov ◽  
Igor Shubnyakov ◽  
Alexey Denisov ◽  
Vladimir Konev ◽  
Iosif Gofman ◽  
...  

Introduction: Due to a lack of uniform shapes and sizes of bone defects in hip and knee joint pathology, their fixing could benefit from using individually manufactured 3D-printed highly porous titanium implants. The objective of this study was to evaluate the extent of bone and muscle tissue integration into porous titanium implants manufactured using additive technology. Materials and methods: Porous and non-porous titanium plates were implanted into the latissimus dorsi muscle and tibia of 9 rabbits. On days 1, 60 and 90 animals were examined with x-rays. On day 60 histological tests were carried out. On day 90 the tensile strength at the implant-tissue interface was tested. Results: Histological analysis of muscle samples with porous titanium implants showed integration of connective tissue and blood vessels into the pores. Bone defect analysis demonstrated bone ingrowth into the pores of titanium with a minimal amount of fibrous tissue. The tensile strength of the muscular tissue attachment to the porous titanium was 28 (22–30) N which was higher than that of the control group 8.5 (5–11) N. Bone tissue attachment strength was 148 (140–152) N in the experimental group versus 118 (84–122) N in the control group. Conclusions: Using additive technology in manufacturing 3D-printed highly porous titanium implants improves bone and muscle integration compared with the non-porous material of the control group. This could be a promising approach to bone defect repair in revision and reconstruction surgery.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 531
Author(s):  
Tomáš Suchý ◽  
Lucie Vištejnová ◽  
Monika Šupová ◽  
Pavel Klein ◽  
Martin Bartoš ◽  
...  

The aim of the study was to develop an orthopedic implant coating in the form of vancomycin-loaded collagen/hydroxyapatite layers (COLHA+V) that combine the ability to prevent bone infection with the ability to promote enhanced osseointegration. The ability to prevent bone infection was investigated employing a rat model that simulated the clinically relevant implant-related introduction of bacterial contamination to the bone during a surgical procedure using a clinical isolate of Staphylococcus epidermidis. The ability to enhance osseointegration was investigated employing a model of a minipig with terminated growth. Six weeks following implantation, the infected rat femurs treated with the implants without vancomycin (COLHA+S. epidermidis) exhibited the obvious destruction of cortical bone as evinced via a cortical bone porosity of up to 20% greater than that of the infected rat femurs treated with the implants containing vancomycin (COLHA+V+S. epidermidis) (3%) and the non-infected rat femurs (COLHA+V) (2%). The alteration of the bone structure of the infected COLHA+S. epidermidis group was further demonstrated by a 3% decrease in the average Ca/P molar ratio of the bone mineral. Finally, the determination of the concentration of vancomycin released into the blood stream indicated a negligible systemic load. Six months following implantation in the pigs, the quantified ratio of new bone indicated an improvement in osseointegration, with a two-fold bone ingrowth on the COLHA (47%) and COLHA+V (52%) compared to the control implants without a COLHA layer (27%). Therefore, it can be concluded that COLHA+V layers are able to significantly prevent the destruction of bone structure related to bacterial infection with a minimal systemic load and, simultaneously, enhance the rate of osseointegration.


Biomaterials ◽  
2007 ◽  
Vol 28 (18) ◽  
pp. 2810-2820 ◽  
Author(s):  
J LI ◽  
P HABIBOVIC ◽  
M VANDENDOEL ◽  
C WILSON ◽  
J DEWIJN ◽  
...  

2016 ◽  
Vol 59 ◽  
pp. 690-701 ◽  
Author(s):  
Naoya Taniguchi ◽  
Shunsuke Fujibayashi ◽  
Mitsuru Takemoto ◽  
Kiyoyuki Sasaki ◽  
Bungo Otsuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document