scholarly journals Recent trend of cold winters followed by hot summers in South Korea due to the combined effects of the warm western tropical Pacific and North Atlantic in spring

Author(s):  
Boksoon Myoung
2021 ◽  
pp. 1-39
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Zeng-Zhen Hu

AbstractAn unprecedented extreme positive Indian Ocean Dipole event (pIOD) occurred in 2019, which has caused widespread disastrous impacts on countries bordering the Indian Ocean, including the East African floods and vast bushfires in Australia. Here we investigate the causes for the 2019 pIOD by analyzing multiple observational datasets and performing numerical model experiments. We find that the 2019 pIOD is triggered in May by easterly wind bursts over the tropical Indian Ocean associated with the dry phase of the boreal summer intraseasonal oscillation, and sustained by the local atmosphere-ocean interaction thereafter. During September-November, warm sea surface temperature anomalies (SSTA) in the central-western tropical Pacific further enhance the Indian Ocean’s easterly winds, bringing the pIOD to an extreme magnitude. The central-western tropical Pacific warm SSTA is strengthened by two consecutive Madden Julian Oscillation (MJO) events that originate from the tropical Indian Ocean. Our results highlight the important roles of cross-basin and cross-timescale interactions in generating extreme IOD events. The lack of accurate representation of these interactions may be the root for a short lead time in predicting this extreme pIOD with a state-of-the-art climate forecast model.


2011 ◽  
Vol 8 (3) ◽  
pp. 5653-5689 ◽  
Author(s):  
C. Dupouy ◽  
D. Benielli-Gary ◽  
J. Neveux ◽  
Y. Dandonneau ◽  
T. K. Westberry

Abstract. Trichodesmium, a major colonial cyanobacterial nitrogen fixer, forms large blooms in NO3-depleted tropical oceans and enhances CO2 sequestration by the ocean due to its ability to fix dissolved dinitrogen. Thus, its importance in C and N cycles requires better estimates of its distribution at basin to global scales. However, existing algorithms to detect them from satellite have not yet been successful in the South Western Tropical Pacific (SWTP). Here, a novel approach based on radiance anomaly spectra (RAS) observed in SeaWiFS imagery is used to detect Trichodesmium during the austral summertime in the SWTP. Selected pixels are characterized by a restricted range of parameters quantifying RAS spectra quantitative parameters (e.g. slope, intercept, curvature). The fraction of valid pixels identified as Trichodesmium surface blooms in the region 5° S–25° S 160° E–190° E is low (between 0.01 and 0.2 %), but is about 100 times higher than suggested by previous algorithms. This represents a total surface area which varies from 1500 to 20 000 km2. A monthly distribution of Trichodesmium surface accumulations in the SWTP is presented which demonstrates that the number of selected pixels peaks in November–February each year, consistent with field observations. This approach was validated with in situ observations of Trichodesmium surface accumulations for the period 1998–2010.


Sign in / Sign up

Export Citation Format

Share Document