scholarly journals A new proof of the Voronoï summation formula

2011 ◽  
Vol 44 (22) ◽  
pp. 225302 ◽  
Author(s):  
Sebastian Egger né Endres ◽  
Frank Steiner
Author(s):  
Debika Banerjee ◽  
Ehud Moshe Baruch ◽  
Daniel Bump

2014 ◽  
Vol 11 (01) ◽  
pp. 39-49 ◽  
Author(s):  
Bin Wei

Let f be a holomorphic cusp form of weight k for SL(2, ℤ) with Fourier coefficients λf(n). We study the sum ∑n>0λf(n)ϕ(n/X)e(αn), where [Formula: see text]. It is proved that the sum is rapidly decaying for α close to a rational number a/q where q2 < X1-ε. The main techniques used in this paper include Dirichlet's rational approximation of real numbers, a Voronoi summation formula for SL(2, ℤ) and the asymptotic expansion for Bessel functions.


2015 ◽  
Vol 92 (2) ◽  
pp. 195-204 ◽  
Author(s):  
HENGCAI TANG

Let $\{{\it\phi}_{j}(z):j\geq 1\}$ be an orthonormal basis of Hecke–Maass cusp forms with Laplace eigenvalue $1/4+t_{j}^{2}$. Let ${\it\lambda}_{j}(n)$ be the $n$th Fourier coefficient of ${\it\phi}_{j}$ and $d_{3}(n)$ the divisor function of order three. In this paper, by the circle method and the Voronoi summation formula, the average value of the shifted convolution sum for $d_{3}(n)$ and ${\it\lambda}_{j}(n)$ is considered, leading to the estimate $$\begin{eqnarray}\displaystyle \mathop{\sum }_{n\leq X}d_{3}(n){\it\lambda}_{j}(n-1)\ll X^{29/30+{\it\varepsilon}}, & & \displaystyle \nonumber\end{eqnarray}$$ where the implied constant depends only on $t_{j}$ and ${\it\varepsilon}$.


2019 ◽  
Vol 101 (3) ◽  
pp. 401-414
Author(s):  
HENGCAI TANG

Let $d_{3}(n)$ be the divisor function of order three. Let $g$ be a Hecke–Maass form for $\unicode[STIX]{x1D6E4}$ with $\unicode[STIX]{x1D6E5}g=(1/4+t^{2})g$. Suppose that $\unicode[STIX]{x1D706}_{g}(n)$ is the $n$th Hecke eigenvalue of $g$. Using the Voronoi summation formula for $\unicode[STIX]{x1D706}_{g}(n)$ and the Kuznetsov trace formula, we estimate a shifted convolution sum of $d_{3}(n)$ and $\unicode[STIX]{x1D706}_{g}(n)$ and show that $$\begin{eqnarray}\mathop{\sum }_{n\leq x}d_{3}(n)\unicode[STIX]{x1D706}_{g}(n-1)\ll _{t,\unicode[STIX]{x1D700}}x^{8/9+\unicode[STIX]{x1D700}}.\end{eqnarray}$$ This corrects and improves the result of the author [‘Shifted convolution sum of $d_{3}$ and the Fourier coefficients of Hecke–Maass forms’, Bull. Aust. Math. Soc.92 (2015), 195–204].


2021 ◽  
Vol 194 (4) ◽  
pp. 657-685
Author(s):  
Edgar Assing ◽  
Andrew Corbett

AbstractWe consider the Fourier expansion of a Hecke (resp. Hecke–Maaß) cusp form of general level N at the various cusps of $$\Gamma _{0}(N)\backslash \mathbb {H}$$ Γ 0 ( N ) \ H . We explain how to compute these coefficients via the local theory of p-adic Whittaker functions and establish a classical Voronoï summation formula allowing an arbitrary additive twist. Our discussion has applications to bounding sums of Fourier coefficients and understanding the (generalised) Atkin–Lehner relations.


2017 ◽  
Vol 2019 (11) ◽  
pp. 3473-3484 ◽  
Author(s):  
Stephen D Miller ◽  
Fan Zhou

Abstract In this article, we show how the $\textrm{GL}(N)$ Voronoi summation formula of [13] can be rewritten to incorporate hyper-Kloosterman sums of various dimensions on both sides. This generalizes a formula for $\textrm{GL}(4)$ with ordinary Kloosterman sums on both sides that was used in [1] to prove nonvanishing of GL(4) $L$-functions by GL(2)-twists, and later by the second-named author in [16].


2005 ◽  
Vol 42 (1) ◽  
pp. 21-35 ◽  
Author(s):  
J. Weijian ◽  
G. Mingzhe ◽  
G. Xuemei

A weighted Hardy-Hilbert’s inequality with the parameter λ of form \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sum\limits_{m = 1}^\infty {\sum\limits_{n = 1}^\infty {\frac{{a_m b_n }}{{(m + n)^\lambda }}} < B^* (\lambda )\left( {\sum\limits_{n = 1}^\infty {n^{1 - \lambda } a_{a_n }^p } } \right)^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} \left( {\sum\limits_{n = 1}^\infty {n^{1 - \lambda } b_n^q } } \right)^q }$$ \end{document} is established by introducing two parameters s and λ, where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\tfrac{1}{p} + \tfrac{1}{q} = 1,p \geqq q > 1,1 - \tfrac{q}{p} < \lambda \leqq 2,B^* (\lambda ) = B(\lambda - (1 - \tfrac{{2 - \lambda }}{p}),1 - \tfrac{{2 - \lambda }}{p})$$ \end{document} is the beta function. B *(λ) is proved to be best possible. A stronger form of this inequality is obtained by means of the Euler-Maclaurin summation formula.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Haili Qiao ◽  
Aijie Cheng

AbstractIn this paper, we consider the time fractional diffusion equation with Caputo fractional derivative. Due to the singularity of the solution at the initial moment, it is difficult to achieve an ideal convergence rate when the time discretization is performed on uniform meshes. Therefore, in order to improve the convergence order, the Caputo time fractional derivative term is discretized by the {L2-1_{\sigma}} format on non-uniform meshes, with {\sigma=1-\frac{\alpha}{2}}, while the spatial derivative term is approximated by the classical central difference scheme on uniform meshes. According to the summation formula of positive integer k power, and considering {k=3,4,5}, we propose three non-uniform meshes for time discretization. Through theoretical analysis, different time convergence orders {O(N^{-\min\{k\alpha,2\}})} can be obtained, where N denotes the number of time splits. Finally, the theoretical analysis is verified by several numerical examples.


Sign in / Sign up

Export Citation Format

Share Document