Dynamic global Vreman model for large eddy simulation of inhomogeneous turbulent flow in a full passage of Francis turbine

2012 ◽  
Vol 15 (6) ◽  
pp. 062007
Author(s):  
W Q Wang ◽  
D W Hao ◽  
L X Zhang ◽  
Y K Guo
2011 ◽  
Vol 121-126 ◽  
pp. 3657-3661
Author(s):  
Dun Zhang ◽  
Yuan Zheng ◽  
Ying Zhao ◽  
Jian Jun Huang

Numerical simulation of three-dimensional transient turbulent flow in the whole flow passage of a Francis turbine were based upon the large eddy simulation(LES) technique on Smargorinsky model and sliding mesh technology. The steady flow data simulated with the standard k-εmodel was used as the initial conditions for the unsteady simulation. The results show that LES can do well transient turbulent flow simulation in a Francis turbine with complex geometry. The computational method provides some reference for exploring the mechanism of eddy formation in a complex turbulent of hydraulic machinery.


2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Wen Zhang ◽  
Minping Wan ◽  
Zhenhua Xia ◽  
Jianchun Wang ◽  
Xiyun Lu ◽  
...  

Author(s):  
N Kharoua ◽  
L Khezzar

Large eddy simulation of turbulent flow around smooth and rough hemispherical domes was conducted. The roughness of the rough dome was generated by a special approach using quadrilateral solid blocks placed alternately on the dome surface. It was shown that this approach is capable of generating the roughness effect with a relative success. The subgrid-scale model based on the transport of the subgrid turbulent kinetic energy was used to account for the small scales effect not resolved by large eddy simulation. The turbulent flow was simulated at a subcritical Reynolds number based on the approach free stream velocity, air properties, and dome diameter of 1.4 × 105. Profiles of mean pressure coefficient, mean velocity, and its root mean square were predicted with good accuracy. The comparison between the two domes showed different flow behavior around them. A flattened horseshoe vortex was observed to develop around the rough dome at larger distance compared with the smooth dome. The separation phenomenon occurs before the apex of the rough dome while for the smooth dome it is shifted forward. The turbulence-affected region in the wake was larger for the rough dome.


Sign in / Sign up

Export Citation Format

Share Document