scholarly journals Large eddy simulation of boundary layer transition flow around NACA0009 blunt trailing edge hydrofoil at high Reynolds number

Author(s):  
J Chen ◽  
Y J Li ◽  
Z Q Liu
1997 ◽  
Vol 336 ◽  
pp. 151-182 ◽  
Author(s):  
BRANKO KOSOVIĆ

It has been recognized that the subgrid-scale (SGS) parameterization represents a critical component of a successful large-eddy simulation (LES). Commonly used linear SGS models produce erroneous mean velocity profiles in LES of high-Reynolds-number boundary layer flows. Although recently proposed approaches to solving this problem have resulted in significant improvements, questions about the true nature of the SGS problem in shear-driven high-Reynolds-number flows remain open.We argue that the SGS models must capture inertial transfer effects including backscatter of energy as well as its redistribution among the normal SGS stress components. These effects are the consequence of nonlinear interactions and anisotropy. In our modelling procedure we adopt a phenomenological approach whereby the SGS stresses are related to the resolved velocity gradients. We show that since the SGS stress tensor is not frame indifferent a more general nonlinear model can be applied to the SGS parameterization. We develop a nonlinear SGS model capable of reproducing the effects of SGS anisotropy characteristic for shear-driven boundary layers. The results obtained using the nonlinear model for the LES of a neutral shear-driven atmospheric boundary layer show a significant improvement in prediction of the non-dimensional shear and low-order statistics compared to the linear Smagorinsky-type models. These results also demonstrate a profound effect of the SGS model on the flow structures.


Author(s):  
Curt H. Liebert ◽  
Raymond E. Gaugler ◽  
Herbert J. Gladden

Convection cooled turbine vane metal wall temperatures experimentally obtained in a hot cascade for a given one-vane design were compared with wall temperatures calculated with TACT1 and STAN5 computer codes which incorporated various models for predicting laminar-to-turbulent boundary layer transition. Favorable comparisons on both vane surfaces were obtained at high Reynolds number with only one of these transition models. When other models were used, temperature differences between calculated and experimental data obtained at the high Reynolds number were as much as 14 percent in the separation bubble region of the pressure surface. On the suction surface and at lower Reynolds number, predictions and data unsatisfactorily differed by as much as 22 percent. Temperature differences of this magnitude can represent orders of magnitude error in blade life prediction.


2018 ◽  
Vol 17 (4-5) ◽  
pp. 399-424 ◽  
Author(s):  
Christophe Bogey

Three isothermal round jets at a Mach number of 0.9 and a diameter-based Reynolds number of 105 are computed by large-eddy simulation using four different meshes in order to investigate the grid sensitivity of the jet flow field and noise. The jets correspond to two initially fully laminar jets and one initially strongly disturbed jet considered in previous numerical studies. At the exit of a pipe nozzle of radius r0, they exhibit laminar boundary-layer mean-velocity profiles of thickness [Formula: see text] and [Formula: see text], respectively. For the third jet, a peak turbulence intensity close to 9% is also imposed by forcing the boundary layer in the nozzle. The grids contain up to one billion points, and, compared to the grids used in previous simulations, they are finer in the axial direction downstream of the nozzle and in the radial direction on the jet axis and in the outer region of the mixing layers. The main flow field and noise characteristics given by the simulations, including the mixing-layer thickness, the centerline mean velocity, the turbulence intensities on the nozzle lip line and the jet axis, spectra of velocity and far-field pressure obtained from the jet near field by solving the isentropic linearized Euler equations, are presented. With respect to those from previous studies, the results are very similar for the initially laminar jet with thick boundary layers, but they differ significantly for the initially laminar jet with thin boundary layers and for the initially disturbed jet. For the latter two jets, using a finer grid leads to a faster flow development, to higher turbulence intensities in the shear layers and at the end of the potential core, to stronger large-scale structures, and to the generation of more low-frequency noise. Moreover, very small mesh spacings appear to be necessary all along the jet mixing layers, and in particular during their early stages of growth, to properly capture the formation and dynamics of the flow coherent structures and thus obtain results in good agreement with measurements available for high-Reynolds-number jets.


Sign in / Sign up

Export Citation Format

Share Document