scholarly journals Variability in growth and yield among sweet corn genotypes grown under organic crop management

Author(s):  
M Chozin ◽  
S Sudjatmiko ◽  
Z Muktamar ◽  
N Setyowati ◽  
F Fahrurrozi
Author(s):  
Muchtar ◽  
Andi Nirma Wahyuni ◽  
Andi Irmadamayanti ◽  
Saidah ◽  
Syafruddin
Keyword(s):  

2020 ◽  
Vol 8 (1) ◽  
pp. 2020-2023
Author(s):  
Satdev . ◽  
VJ Zinzala ◽  
Bharat N Chavda ◽  
Lokesh Kumar Saini
Keyword(s):  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e5877 ◽  
Author(s):  
Ram B. Khadka ◽  
Norman Uphoff

Many benefits ofTrichodermainoculation for improving crop production have been documented, including growth and yield enhancement and the alleviation of biotic and abiotic stresses. However, because rice is usually cultivated under continuous flooding that creates anaerobic soil conditions, this limits the benefits of these beneficial fungi. Cultivating rice with the methods of the System of Rice Intensification (SRI) provides rice plants with a more favorable environment for their colonization by beneficial microbes in the soil because the soil is more aerobic under SRI management and contains more organic matter. This study evaluated the effects ofTrichodermainoculation of rice plants under SRI management compared with transplanted and flooded rice plants, considering also the effects of different means of fertilization and different varieties in rice. Experiments were conducted in 2015 and 2016 under the tropical climate of Nepal’s western terai (plains) during both the rainy season (July to November) and the dry season (March to July). The results indicated significantly better performance (P = 0.01) associated withTrichodermainoculation for both seasons and for both systems of crop management in terms of grain yield and other growth-contributing factors, compared to non-inoculated rice cropping. Relatively higher effects on grain yield were recorded also with organic compared to inorganic fertilization; for unimproved (heirloom) varieties compared with improved varieties; and from SRI vs. conventional flooded crop management. The yield increase withTrichodermatreatments across all trials was 31% higher than in untreated plots (4.9 vs 4.5 mt ha−1). WithTrichodermatreatment, yields compared with non-treated plots were 24% higher with organic SRI (6.38 vs 5.13 mt ha−1) and 52% higher with non-organic SRI (6.38 vs 3.53 mt ha−1). With regard to varietal differences, under SRI managementTrichodermainoculation of the improved variety Sukhadhan-3 led to 26% higher yield (6.35 vs 5.04 mt ha−1), and with the heirloom variety Tilkidhan, yield was 41% higher (6.29 vs 4.45 mt ha−1). Economic analysis indicated that expanding the organic cultivation of local landraces under SRI management should be profitable for farmers where such rice has a good market price due to its premium quality and high demand and when SRI enhances yield. These varieties’ present low yields can be significantly increased by integratingTrichodermabio-inoculation with SRI cultural methods. Other recent research has shown that such inoculation can be managed profitably by farmers themselves.


2021 ◽  
pp. 89-123
Author(s):  
Dennis B. Egli

Abstract This chapter discusses planting-seed quality, variety selection, plant population, planting date and row spacing. The goal of crop management is to create the perfect environment for the growth of the crop, where the perfect environment is characterized by the absence of stress or other factors that reduce crop growth and yield. This goal may be impossible or uneconomical to achieve, but that does not detract from its usefulness as a goal. The management practices discussed in this chapter are fundamental components of grain production systems that contribute to reaching the goal of the perfect environment. There are many management options available to an individual producer; selecting the best combination is not always easy and it may be constrained by factors outside the realm of the physiological processes controlling crop yield.


2019 ◽  
Vol 226 ◽  
pp. 105757 ◽  
Author(s):  
Tayebeh Zarei ◽  
Ali Moradi ◽  
Seyed Abdolreza Kazemeini ◽  
Hooshang Farajee ◽  
Alireza Yadavi

Weed Science ◽  
2009 ◽  
Vol 57 (3) ◽  
pp. 319-325 ◽  
Author(s):  
Martin M. Williams

Sweet corn is planted over a long season to temporally extend the perishable supply of ears for fresh and processing markets. Most growers' fields have weeds persisting to harvest (hereafter called residual weeds), and evidence suggests the crop's ability to endure competitive stress from residual weeds (i.e., crop tolerance) is not constant over the planting season. Field studies were conducted to characterize changes in the residual weed community over the long planting season and determine the extent to which planting date influences crop tolerance to weed interference in growth and yield traits. Total weed density at harvest was similar across five planting dates from mid-April to early-July; however, some changes in composition of species common to the midwestern United States were observed. Production of viable weed seed within the relatively short growth period of individual sweet corn plantings showed weed seedbank additions are influenced by species and planting date. Crop tolerances in growth and yield were variable in the mid-April and both May plantings, and the crop was least affected by weed interference in the mid-June and early-July planting dates. As the planting season progressed from late-May to early-July, sweet corn accounted for a great proportion of the total crop–weed biomass. Based on results from Illinois, a risk management perspective to weeds should recognize the significance of planting date on sweet corn competitive ability. This work suggests risk of yield loss from weed control failure is lower in late-season sweet corn plantings (June and July) than earlier plantings (April and May).


2002 ◽  
Vol 71 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Shigenori MIURA ◽  
Yoshiaki WATANABE
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document