scholarly journals Effects ofTrichodermaseedling treatment with System of Rice Intensification management and with conventional management of transplanted rice

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e5877 ◽  
Author(s):  
Ram B. Khadka ◽  
Norman Uphoff

Many benefits ofTrichodermainoculation for improving crop production have been documented, including growth and yield enhancement and the alleviation of biotic and abiotic stresses. However, because rice is usually cultivated under continuous flooding that creates anaerobic soil conditions, this limits the benefits of these beneficial fungi. Cultivating rice with the methods of the System of Rice Intensification (SRI) provides rice plants with a more favorable environment for their colonization by beneficial microbes in the soil because the soil is more aerobic under SRI management and contains more organic matter. This study evaluated the effects ofTrichodermainoculation of rice plants under SRI management compared with transplanted and flooded rice plants, considering also the effects of different means of fertilization and different varieties in rice. Experiments were conducted in 2015 and 2016 under the tropical climate of Nepal’s western terai (plains) during both the rainy season (July to November) and the dry season (March to July). The results indicated significantly better performance (P = 0.01) associated withTrichodermainoculation for both seasons and for both systems of crop management in terms of grain yield and other growth-contributing factors, compared to non-inoculated rice cropping. Relatively higher effects on grain yield were recorded also with organic compared to inorganic fertilization; for unimproved (heirloom) varieties compared with improved varieties; and from SRI vs. conventional flooded crop management. The yield increase withTrichodermatreatments across all trials was 31% higher than in untreated plots (4.9 vs 4.5 mt ha−1). WithTrichodermatreatment, yields compared with non-treated plots were 24% higher with organic SRI (6.38 vs 5.13 mt ha−1) and 52% higher with non-organic SRI (6.38 vs 3.53 mt ha−1). With regard to varietal differences, under SRI managementTrichodermainoculation of the improved variety Sukhadhan-3 led to 26% higher yield (6.35 vs 5.04 mt ha−1), and with the heirloom variety Tilkidhan, yield was 41% higher (6.29 vs 4.45 mt ha−1). Economic analysis indicated that expanding the organic cultivation of local landraces under SRI management should be profitable for farmers where such rice has a good market price due to its premium quality and high demand and when SRI enhances yield. These varieties’ present low yields can be significantly increased by integratingTrichodermabio-inoculation with SRI cultural methods. Other recent research has shown that such inoculation can be managed profitably by farmers themselves.

EUGENIA ◽  
2018 ◽  
Vol 24 (1) ◽  
Author(s):  
Jeanne M. Paulus ◽  
Jemmy Najoan ◽  
Paula C. Supit

ABSTRACT The aim of the research was to studied the application of gliricidia MOL on the growth and yield of lowland rice in the SRI method, and to get the best time of gliricidia MOL application on the growth and production of lowland rice. Field research has been conducted in Tara-Tara II Village, West Tomohon Subdistrict for five months starting from June 2017 until November 2017. Treatment in the experiment consists of one treatment factor, that was interval time of gliricidia MOL application, ie  : 0, 5 , 10, 15, and 20 days. The results showed that time application of gliricidia MOL have an effect on the number of productive tillers, the number of filled grain/panicle, the number  of empty grain/panicle, and the dry grain yield (GKP) / plot, but not affect the plant height. The best results were achieved in gliricia MOL application on interval time every 15 days with a values were : 28.66 productive tillers; 176.90 fillet grain/panicle; 19.80 empty grain/panicle (lowest); and 9.50 kg dry grain yield or equivalent to 7.92 ton/ha.Keywords: gliricidia MOL, production, lowland rice,  System of Rice Intensification  (SRI)


1990 ◽  
Vol 115 (3) ◽  
pp. 313-320 ◽  
Author(s):  
J. T. Baker ◽  
L. H. Allen ◽  
K. J. Boote

SUMMARYRice plants (Oryza salivaL., cv. IR30) were grown in paddy culture in outdoor, naturally sunlit, controlled-environment, plant growth chambers at Gainesville, Florida, USA, in 1987. The rice plants were exposed throughout the season to subambient (160 and 250), ambient (330) or superambient (500, 660, 900 μmol CO2/mol air) CO2concentrations. Total shoot biomass, root biomass, tillering, and final grain yield increased with increasing CO2concentration, thegreatest increase occurring between the 160 and 500 μmol CO2/mol air treatments. Early in the growing season, root:shoot biomass ratio increased with increasing CO2concentration; although the ratio decreased during the growing season, net assimilation rate increased with increasingCO2concentration and decreased during the growing season. Differences in biomass and lamina area among CO2treatments were largely due to corresponding differences in tillering response. The number of panicles/plant was almost entirely responsible for differences in final grain yield among CO2treatments. Doubling the CO2 concentration from 330 to 660 μmol CO2/mol air resulted in a 32 % increase in grain yield. These results suggest that important changes in the growth and yield of rice may be expected in the future as the CO2concentration of the earth's atmosphere continues to rise.


Author(s):  
Sanat Kumar Dwibedi ◽  
Gopal Chandra De ◽  
Sudhi Ranjan Dhua ◽  
Ashok Kumar Mohanty

Field experiment was conducted in coastal alluvium soil of eastern India during late rabi of 2009-10 and 2010-11 in split split-plot design with three dates of sowing for rice-ratoon i.e. 20 June, 5 and 20 July followed by green gram cv. PDM-139 (Samrat) i.e. 2 January, 17 January and 1 February in main plots, three systems of cultivation of the preceding rice-ratoon i.e. ratoons of rice under best management practices (BMP), system of rice intensification (SRI) and modified SRI (MSRI) in sub plots and two genotypes of rice-ratoon i.e. HR Ajay and HYV Tapaswini in sub sub-plots. Green gram was grown under residual soil nutrient and the crop sown on 2 January recorded the highest seed yield of 0.703 t ha-1 (REY of 2.933 t ha-1) and this was followed by sowing on 17 January and 1 February. The seed yield of green gram followed diminishing trend under SRI-ratoon, MSRI-ratoon and BMP-ratoon, respectively.


1989 ◽  
Vol 112 (2) ◽  
pp. 265-276 ◽  
Author(s):  
D. R. Hodgson ◽  
G. M. Whiteley ◽  
Anna E. Bradnam

SummaryExperiments were carried out in 1985 and 1986 on a sandy clay–loam to investigate the effects of above average rainfall in May and early June on the growth of the spring barley cv. Klaxon in three systems of cultivation. The cultivation treatments, ploughing (P), shallow-tine cultivation (S) and direct drilling (D), had been repeated on the same plots and cropped with spring barley each year since 1971.A total of 112 mm water was applied to the waterlogged subplots in 1985 and 168 mm in 1986.Compared with plots receiving the normal seasonal rainfall, extra water had no effect on shoot or grain yield in 1985 (mean grain yield 6·38 t/ha) and there were no significant differences between cultivation systems. In 1986, in contrast, water, in excess of normal rainfall, depressed both shoot growth and grain yield (mean grain yields 4·49 and 4·07 t/ha for the normal rainfall and the additional water treatments, respectively), the effect being greater on P than on either S or D.In both years, saturation was achieved in the topsoil for a prolonged period during May and early June in the waterlogged subplots. In 1985 this was associated with a period of low oxygen flux and low redox potential, but this did nothave a significant effect on root or shoot growth. In 1986 there was no comparable period of reduced aeration, nor any significant differences in oxygen flux or redox potentials between water and cultivation treatments. In 1986, reduced growth and yield were directly associated with a mean reduction in N recovery by shoots of 36 kg N/ha, the effect being greatest on the ploughed plots where water was added. The results do not support the hypothesis that waterlogging per seaffects the growth of barley more on ploughed than on direct-drilled land.


2010 ◽  
pp. 95-100
Author(s):  
ABS Sarker ◽  
MB Rahman ◽  
R Yasmeen ◽  
MA Islam ◽  
SMM Islam

An experiment was conducted at the Bangladesh Rice Research Institute regional station, Rangpur to investigate the performances of different establishment methods of Boro rice; variety BRRI dhan29 in light texture soil during Boro 2004-05 and 2005-06 seasons. Five crop establishment methods were tested in a randomize complete block design with three replications. The methods were: 1. Conventional transplanting method 2. System of Rice Intensification (SRI) method, 3. Farmers practice, 4. Seedling throwing method and 5. Direct-Wet Seeded Rice(DWSR) using drum seeder method. Grain yield was influenced by different crop establishment methods in both the seasons. The highest mean grain yield was obtained by BRRI recommended conventional transplanting method (6.27 t ha-1) followed by SRI method (5.70 t ha-1). The highest number of panicles m-2 was obtained from wet DSR by drum seeder method (341 m-2). Effectiveness of tiller (92%) was obtained from the SRI method. The largest number of filled grains per panicle (76) was obtained from the SRI method. The highest 1000-grain weight (23.2 g) was obtained by the farmer’s method. Less sterility was occurred (30 %) from farmer’s methods. The highest growth duration (175 days) was observed in farmer method. But the highest field duration of BRRI dhan29 (145 days) was observed in wet DSR using dream seeder.


2014 ◽  
Vol 2 (1) ◽  
pp. 36-43
Author(s):  
S. Chakrabortty ◽  
P. K. Biswas ◽  
T. S. Roy ◽  
M. A. A. Mahmud ◽  
H. Mehraj ◽  
...  

2021 ◽  
Author(s):  
Felipe de Campos Carmona ◽  
Janete Mariza Adamski ◽  
Andriele Wairich ◽  
Joseane Biso de Carvalho ◽  
Gustavo Gomes Lima ◽  
...  

Abstract Iron toxicity is a major nutritional disorder in rice plants, especially in flooded areas. The use of alternative crop management practices, such as soil drainage, may mitigate negative impacts of iron toxicity, since soil aeration that follows drainage can oxidize and precipitate potentially toxic Fe+2 into Fe3+. This study aimed to evaluate the impact of alternative water management on agronomical and physiological parameters in rice plants grown in a field location with iron toxicity history. Rice cultivars BR-IRGA 409 (sensitive) and IRGA 425 (resistant to iron toxicity) were tested. Irrigation management comprised three treatments: Continuous Irrigation (CI), one cycle of water Suppression (1S) and two cycles of water Suppression (2S). Evaluations included the ionic composition of soil solution and leaf tissues, grain yield, antioxidant responses and gene expression. Permanent soil flooding resulted in higher grain yield in plants from the resistant than from the sensitive genotype, which had higher malondialdehyde (MDA) concentrations in leaves. In contrast, two cycles of alternate soil drying resulted in equivalent grain yield and MDA concentrations in both genotypes. Resistance to iron toxicity in IRGA 425 plants seems related to limited Fe translocation to shoots, increased tolerance to oxidative stress in leaves and higher expression of Ferritin, OsGAP1, OsWRKY80 and Oryzain-α genes. Plants from the BR-IRGA 409 cultivar (sensitive to Fe toxicity) improved growth and yield under the interrupted irrigation treatments, probably due to lower Fe availability in the soil solution. Management of water irrigation successfully alleviated Fe toxicity in rice plants cultivated in field conditions.


Sign in / Sign up

Export Citation Format

Share Document