scholarly journals The effect of pretreatment methods for improved biogas production from oil-palm empty fruit bunches (EFB): experimental and model

Author(s):  
Pornwimon Wadchasit ◽  
Chairat Siripattana ◽  
Kamchai Nuithitikul
2014 ◽  
Vol 925 ◽  
pp. 243-247 ◽  
Author(s):  
Ashfaq Ahmad ◽  
Syed Muhammad Usman Shah ◽  
Azizul Buang ◽  
Mohd Fariduddin Othman ◽  
Mohd Azmuddin Abdullah

This study investigated co-cultivation of Tetraselmis suecica microalgae with Oil Palm empty fruit bunch (OPEFB) for anaerobic biomethane production and Palm oil mill effluent (POME) treatment. The highest specific biogas production (0.1162 m3 kg-1 COD day-1) and biomethane yield (3900.8 mL CH4 L-1 POME day-1) was achieved with microalgae at 2 mL mL-1 POME, and OPEFB at 0.12 g mL-1 POME. Without co-digestion of microalgae, higher specific biogas production (0.1269 m3 kg-1 COD day-1) but lower biomethane yield (3641.8 mL CH4 L-1 POME day-1) were observed. Second order polynomial model fits the data well with less than 5% error. Higher removal efficiency (62-95%) of COD, BOD, TOC and TN were achieved by aerobic and anaerobic treatment of POME with microalgae than without microalgal treatment after 3 and 7 days of hydraulic retention time (HRT).


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4368
Author(s):  
Muthita Tepsour ◽  
Nikannapas Usmanbaha ◽  
Thiwa Rattanaya ◽  
Rattana Jariyaboon ◽  
Sompong O-Thong ◽  
...  

Oil palm empty fruit bunches (EFB) and palm oil decanter cake (DC) were used to investigate biogas production by using solid-state anaerobic co-digestion (SS-AcoD) with 15% total solid (TS) content. Solid state anaerobic digestion (SS-AD) using substrate to inoculum (S:I) ratio of 3:1, methane yields of 353.0 mL-CH4/g-VS and 101.5 mL-CH4/g-VS were respectively achieved from mono-digestion of EFB without oil palm ash (OPA) addition and of DC with 10% OPA addition under mesophilic conditions 35 °C. By adding 5% OPA to SS-AD using 3:1 S:I ratio under thermophilic conditions (55 °C), mono-digestion of EFB and DC provided methane yields of 365.0 and 160.3 mL-CH4/g-VS, respectively. Furthermore, SS-AcoD of EFB:DC at 1:1 mixing ratio (volatile solid, VS basis), corresponding to carbon to nitrogen (C:N) ratio of 32, gathering with S:I ratio of 3:1 and 5% ash addition, synergistic effect is observed together with similar methane yields of 414.4 and 399.3 mL-CH4/g-VS, achieved under 35 °C and 55 °C, respectively. According to first order kinetic analysis under synergistic condition, methane production rate from thermophilic operation is 5 times higher than that from mesophilic operation. Therefore, SS-AcoD could be potentially beneficial to generate biogas from EFB and DC.


2021 ◽  
Vol 924 (1) ◽  
pp. 012071
Author(s):  
N A Rohma ◽  
S Suhartini ◽  
I Nurika

Abstract Production of biogas from lignocellulosic biomass by anaerobic digestion (AD) has attracted much interest. Oil palm empty fruit bunches (OPEFB), one of lignocellulosic biomass, is highly abundant in Indonesia and has potential as feedstock for bioenergy production such as biogas or methane. Yet, pre-treatments are needed to improve biogas production due to its complex crystalline structures. Chemical pre-treatments with acid or alkaline solution were reported to increase cellulose or highly reduce the lignin content of OPEFB. This study aimed to evaluate the effect of acid and alkaline pre-treatments on the characteristics of OPEFB and methane potential. The acid pre-treatment experimental design was used factor of H2SO4 concentration (1, 1.3, and 1.6 (%v/v)) and NaOH concentration (1.8, 2.8, and 3.8 (%w/v)). Methane potential evaluation was carried out using the biochemical methane potential (BMP) test with the Automatic Methane Potential Test System (AMPTS) II under mesophilic condition (37°C), operated for 28 days. The results showed that both dilute acid and alkaline pre-treatment positively impact altering the characteristics of OPEFB, hence the specific methane potential. Alkaline pre-treatment with NaOH 3.8 (%w/v) gave the highest average SMP value of 0.161 ± 0.005 m3 CH4/kgVSadded.


2016 ◽  
Vol 78 (5-6) ◽  
Author(s):  
Ashfaq Ahmad ◽  
Syed Muhammad Usman Shah ◽  
Azizul Buang ◽  
Mohd Azmuddin Abdullah

This study investigated the optimization of anaerobic co-cultivation of multi-algal species with Oil Palm Empty Fruit Bunches (OPEFB) for Palm Oil Mill Effluent (POME) treatment and biomethane production. The highest removal of COD (95-98%), BOD (90-98%), TOC (81-86%) and TN (78-80%) were achieved after 7 days anaerobic treatment with the presence of microalgae. The highest biomethane (4,651.9 mL CH4/L POME/day) and the specific biogas production rate (0.124 m3/kg COD/day) with CO2 (2,265.9mL CO2/L POME/day) were achieved by co-cultivating N. oculata and Chlorella sp. (each at 1 mL/mL POME) with OPEFB (0.12 g/mL POME). The combination of N. oculata (2 mL/mL POME) with T. suecica or Chlorella sp. (each at 1 mL/mL POME), and OPEFB (0.12 g/mL POME) obtained high biomethane (4,018.9 mL CH4/L POME /day) but lower biogas (0.097 m3/kg COD/day) and CO2 (2,079.5mL CO2/L POME/day). Generally, low OPEFB and having all the three strains or increasing the level of any (2 mL/mL POME) especially T. suecica, could lower biomethane (870-953 mL CH4/L POME/day) and CO2 (803-854mL CO2/L POME/day), with the biogas around 0.08-0.09 m3/kg COD/day. The optimum conditions were predicted by Response Surface Methodology and the multiple coefficients of determination, r2, of 86% suggests good agreement between experimental and predicted values.


2014 ◽  
Vol 625 ◽  
pp. 818-821 ◽  
Author(s):  
Ashfaq Ahmad ◽  
Syed Muhammad Usman Shah ◽  
Mohd Fariduddin Othman ◽  
Mohd Azmuddin Abdullah

Co-cultivation ofNannochloropsisoculatawith Oil Palm Empty Fruit Bunches (OPEFB) was explored for biomethane production and POME treatment. The experimental results were analyzed and modeled using a multilevel factorial design (MFD) of response surface methodology (RSM). Maximum specific biogas production rate (0.126 m3kg-1COD day-1) and biomethane production (4813.0 mL CH4L-1POME day-1) were achieved with 2 mL mL-1POME of microalgae and OPEFB 0.12 g mL-1POME. POME treatment after 3 and 7 days with microalgae achieved higher removal efficiency (56-98%) of COD, BOD and TOC, than without microalgae.


DYNA ◽  
2014 ◽  
Vol 81 (187) ◽  
pp. 96-101 ◽  
Author(s):  
Danay Carrillo-Nieves ◽  
Lourdes Zumalacárregui-de-Cárdenas ◽  
Rafael Franco-Rico ◽  
Ilona Sarvari-Horvath

2020 ◽  
Vol 5 (2) ◽  
pp. 210-216
Author(s):  
Atmadian Pratama ◽  
Ramayanty Bulan ◽  
Darwin Darwin

Abstrak. Pemanfaatan limbah peternakan sapi (kotoran sapi) sebagai sumber bahan bakar dalam bentuk biogas merupakan salah satu alternatif yang sangat tepat untuk meningkatkan nilai tambah bagi masyarakat petani. Pemanfaatan kotoran ternak sebagai sumber energi, tidak mengurangi jumlah pupuk organik yang bersumber dari kotoran ternak. Hal ini karena pada pembuatan biogas kotoran ternak yang sudah diproses dikembalikan ke kondisi semula yang diambil hanya gas metana (CH4) yang digunakan sebagai bahan bakar. Kotoran ternak yang sudah diproses pada pembuatan biogas dipindahkan ke tempat lebih kering, dan bila sudah kering dapat disimpan dalam karung untuk penggunaan selanjutnya sebagai pupuk organik. Tandan kosong sawit (TKS) merupakan limbah dari pabrik kelapa sawit yang pemanfaatnya masih terbatas sebagai pupuk organik yang memiliki nilai tambah yang rendah. Setiap produksi kelapa sawit menghasilkan limbah berupa tandan kosong sawit  sebesar 23%, sehingga berdasarkan produksi kelapa sawit tahun 2010 dan 2011 berpotensi dihasilkan limbah tandan kosong sawit sebesar 5 juta ton. Akumulasi limbah TKS dari tahun ke tahun jika tidak dimanfaatkan secara optimal maka dapat berakibat buruk bagi lingkungan. Penelitian ini bertujuan untuk melihat potensi produksi biogas melalui teknologi anaerobik digesi (anaerobic digestion) kotoran sapi dan anaerobik co-digesi kotoran sapi dengan limbah TKS. Hasil penelitian menunjukkan bahwa pada proses fermentasi dengan hydraulic retention time (HRT) 25 hari dan pemberian suhu panas yang sama terdapat hasil yang berbeda terhadap produksi biogas kotoran sapi digesi dan juga kotoran sapi co-digesi dengan tepung TKS dengan hasil produksi biogas total lebih tinggi pada fermentasi co-digesi, dimana produksi gas yang dihasilkan adalah 1.015 mL pada kotoran sapi digesi dan 13.830  mL pada kotoran sapi co-digesi. Penambahan tepung TKS meningkatkan nutrisi substrat yang dimanfaatkan mikroba untuk menghasilkan gas metan, namun tetap memperhatikan tingkat ke optimuman derajat keasaman (pH) pada angka 6,8-7,5.Production of Biogas from Cattle Manure Digestion and Co-Digestion with Oil Palm Empty Fruit Bunch under Digestive Anaerobic MethodAbstract. Utilization of livestock waste (manure) as biogas is one of the most appropriate alternatives to overcome the rising prices of fertilizers and fuel oil scarcity. The use of livestock manure as an energy source, does not reduce the amount of organic fertilizer that comes from livestock manure. This is because in the production of biogas manure that has been processed is returned to its original condition, only methane (CH4) is used as fuel. Livestock manure that has been processed in the making of biogas is moved to a drier place, and when it is dry it can be stored in a sack for further use as fertilizer. Oil palm empty fruit bunches (TKS) are waste from palm oil mills is still limited use as organic fertilizer and has low added value. Each palm oil production produces waste in the form of 23% oil palm empty fruit bunches, so that according to the palm production on 2010 and 2011, the potential production of this waste could reach 5 million tons. The accumulation of this waste from year to year will harm our environment. This study aims to look at the potential for biogas production from cow manure digestion and co-digestion with palm oil fruit bunch waste under the anaerobic process. Results showed that for 25 days hydraulic retention time (HRT) and the use of mesophilic temperature, the biogas production by using anaerobic co-digestion of cow manure with TKS (13,830 mL) was higher than the biogas production by using the anaerobic digestion of cow manure (1,015 mL). The addition of TKS flour had increased the nutrient of substrate used by microbes to produce methane gas, but the acidity (pH)of substrate should be controlled at 6.8-7.5.  


Sign in / Sign up

Export Citation Format

Share Document