scholarly journals Research and Application of Nelson Concentrator in Beneficiation Test of Quartz Vein Type Gold Ore

Author(s):  
Wenping Zhang ◽  
Mingming Cai ◽  
Guangsheng Li ◽  
Fabo Huang ◽  
Xingfu Zhu ◽  
...  
Keyword(s):  
Gold Ore ◽  
2021 ◽  
Author(s):  
Florent Cheval-Garabédian ◽  
Eric Marcoux ◽  
Jérôme Gouin ◽  
Maxime Picault ◽  
Michel Faure

<p>Shear zones hosted antimony (Sb) quartz vein-type deposits are the most important sources of Sb worldwide. They have been recognized and mined since the Antiquity in the European Variscan belt, and particularly in the French Variscan Massifs, as the Armorican Massif. Among this type of deposit two subtypes are identified, i) the Sb and gold (Au) quartz vein-type (Sb-Au) as the La Lucette deposit located in the North Armorican Domain, and ii) the Sb-As quartz vein-type as those from the la Bellière district in the Ligerian domain.</p><p>The recent advances in the understanding of the Sb mineralizations in the European Variscan Belt are typically focused on the Sb ore-genesis and its regional implications, ignoring its potential valuable co-products as gold. In this study, detailed textural-mineralogical investigations coupled with geochemical analyses in rock-samples with in-situ EPMA and LA-ICPMS ore-minerals trace element analyses, were carried out for the first time in the Late-Variscan mineralizations from the La Bellière Sb-As occurrences, and the La Lucette Sb-Au deposit, to ascertain the distribution and amount of Au in the ore-minerals and provide new data on ore deposition conditions.</p><p>In the La Bellière Sb-As occurrences, no visible gold has been observed, but low-grade gold, ranging between 0.2 to 1 g/t Au, are correlated with high-grade As in rock sample. In the La Lucette Sb-Au deposit, historical assays have shown high-grade gold with an average at 40 g/t Au. EPMA and LA-ICP-MS analyses have demonstrated that gold is already present during the early time of the mineralization as invisible gold, trapped in the lattice of the Sb-rich arsenopyrites, with an average grade of 70 ppm Au in La Bellière, and at higher average grade of 223 ppm Au for La Lucette. For both type of mineralization, the early invisible gold is concentrated preferentially in the borders of the arsenopyrite crystals, and is correlated with an increase of the As content, and a decrease of the Sb and Fe. We argue that gold could be added in the arsenopyrite by substitution with the Fe and Sb at high temperature > 300 °C.</p><p>Visible gold corresponds to the economic gold ore of the Sb-Au mineralizations. In the La Lucette ore, it is emplaced in the late stages, as discrete electrum grains spatially associated with the arsenopyrites, as native gold inclusions within the stibnite, and associated with rare aurostibite. Remobilization processes of the gold-bearing arsenopyrite at lower temperature, coupled with a minor initial enrichment of the Sb-bearing ore-fluid might be responsible of the late high-grade gold ore, and the visible expression of this element. In the absence of such remobilization process with late ore-fluid-enrichment, only low-grade gold is present, under the form of invisible gold in auriferous-arsenopyrites.</p><p>The presence of a valuable gold co-product, also present in the Sb-As mineralizations, unknown until now in the French Variscan Massifs, will improve its economic attractivity. Gold potential in the huge French Sb-districts as the Vendée or the Brioude-Massiac districts must be reassessed.</p>


2012 ◽  
Vol 47 (6) ◽  
pp. 607-622 ◽  
Author(s):  
Hua-Wen Qi ◽  
Rui-Zhong Hu ◽  
Xiao-Fei Wang ◽  
Wen-Jun Qu ◽  
Xian-Wu Bi ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 326 ◽  
Author(s):  
Binghan Chen ◽  
Jun Deng ◽  
Hantao Wei ◽  
Xingzhong Ji

Lots of studies on gold precipitation mechanisms have focused on fluid inclusions within quartz. However, the trace elements in quartz reflect the properties of the ore fluid, and a comparison of the trace element content in different types of quartz can reveal the precipitation mechanism. The Jinqingding gold deposit is the largest gold deposit in the Muping–Rushan gold belt and contains the largest single sulfide–quartz vein type orebody in the gold belt. This study distinguished four types of quartz in this orebody through field work and investigations of the mineralogy and cathodoluminescence (CL) of the quartz and crosscutting relationships as seen under a microscope. In situ studies via electron probe micro-analyzer (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) were used to determine the trace element content of the different quartz types. Type Qa displayed a comb structure in the field and zoning under the microscope and in CL. Milky white and smoke grey Qb was the most common quartz type and hosted the most sulfide and gold. Qc was Qa and Qb quartz that recrystallized around pyrite or overgrew and appeared different from Qa and Qb in CL images. Qd occurred within fractures in pyrite. Qa formed prior to the mineralization of gold, and Qd formed post-mineralization. Qb and Qc provided information regarding the ore fluid during mineralization. Sericites occurred with pyrite in fractures in the quartz, and some, along with free gold, filled in fractures in pyrite. Free gold occurred within Qa, Qb, Qc, and in brittle fractures in pyrite. Qc had the lowest Al content of all of the quartz types. As Al content is related to the acidity of the ore fluid in previous study, this indicated an acidity decrease during mineralization, which could be attributed to the sericitization. Sericitization could indicate a potential gold occurrence. The Ti content decreased from Qb to Qc, indicating a decrease in temperature during quartz overgrowth formation. Change in acidity and cooling can therefore be identified as possible causes of gold precipitation in the sulfide–quartz vein type in the Jinqingding gold deposit.


2020 ◽  
Vol 120 ◽  
pp. 103433
Author(s):  
Yong Wang ◽  
Juxing Tang ◽  
Liqiang Wang ◽  
Jan Marten Huizenga ◽  
M. Santosh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document