scholarly journals Effect of amphiphilic lignin derivatives (A-LD) surfactant addition on the fermentation process of sorghum bagasse kraft pulp for bioethanol production

Author(s):  
W Fatriasari ◽  
A Karimah ◽  
F Falah ◽  
S H Anita
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Vijayendran Raghavendran ◽  
Joseph P. Webb ◽  
Michaël L. Cartron ◽  
Vicki Springthorpe ◽  
Tony R. Larson ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Muhammad Imran Khan ◽  
Moon Geon Lee ◽  
Hyo Jin Seo ◽  
Jin Hyuk Shin ◽  
Tai Sun Shin ◽  
...  

Microcystis aeruginosa, a freshwater microalga, is capable of producing and accumulating different types of sugars in its biomass which make it a good feedstock for bioethanol production. Present study aims to investigate the effect of different factors increasing growth rate and carbohydrates productivity ofM. aeruginosa. MF media (modified BG11 media) and additional ingredients such as aminolevulinic acid (2 mM), lysine (2.28 mM), alanine (1 mM), and Naphthalene acetic acid (1 mM) as cytokine promotedM. aeruginosagrowth and sugar contents.Salmonellashowed growth-assisting effect onM. aeruginosa. Enhanced growth rate and carbohydrates contents were observed inM. aeruginosaculture grown at 25°C under red LED light of 90 μmolm−2s−1intensity. More greenish and carbohydrates richM. aeruginosabiomass was prepared (final OD660 nm= 2.21 and sugar contents 10.39 mM/mL) as compared to control (maximum OD660 nm= 1.4 and sugar contents 3 mM/mL). The final algae biomass was converted to algae juice through a specific pretreatment method. The resulted algae Juice was used as a substrate in fermentation process. Highest yield of bioethanol (50 mM/mL) was detected whenBrettanomyces custersainus,Saccharomyces cerevisiae, andPichia stipitiswere used in combinations for fermentation process as compared to their individual fermentation. The results indicated the influence of different factors on the growth rate and carbohydrates productivity ofM. aeruginosaand its feasibility as a feedstock for fermentative ethanol production.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Nour Sh. El-Gendy ◽  
Hekmat R. Madian ◽  
Salem S. Abu Amr

A statistical model was developed in this study to describe bioethanol production through a batch fermentation process of sugarcane molasses by locally isolatedSaccharomyces cerevisiaeY-39. Response surface methodology RSM based on central composite face centered design CCFD was employed to statistically evaluate and optimize the conditions for maximum bioethanol production and study the significance and interaction of incubation period, initial pH, incubation temperature, and molasses concentration on bioethanol yield. With the use of the developed quadratic model equation, a maximum ethanol production of 255 g/L was obtained in a batch fermentation process at optimum operating conditions of approximately 71 h, pH 5.6, 38°C, molasses concentration 18% wt.%, and 100 rpm.


2015 ◽  
Vol 16 ◽  
pp. 141-148 ◽  
Author(s):  
Eka Triwahyuni ◽  
Sri Hariyanti ◽  
Deliana Dahnum ◽  
Muhammad Nurdin ◽  
Haznan Abimanyu

2021 ◽  
Author(s):  
SAHELI GHOSAL ◽  
JAYATI BHOWAL

Abstract The present study investigated the usefulness of flaxseed meals as a novel feedstock for the production of bioethanol. The proximate composition of the flaxseed meal was carried out before the pretreatment of the flaxseed meal. In this study, flaxseed meal was pretreated with dilute acid, alkali, and aqueous for disruption of lignocellulosic compounds. The acid pretreated flaxseed meal was used for enzymatic hydrolysis by different enzymes (cellulase, α-amylase, and cellulase combined with α-amylase) for better release of reducing sugar. The cellulose conversion to reducing sugar was significantly higher for acid pretreated flaxseed meals. After enzymatic hydrolysis with cellulase, cellulose conversions to reducing sugars were found to be significantly higher than those of α-amylase and cellulase combined with α-amylase. The bioethanol production was also investigated. The fermentation process was carried out by using baker’s yeast (Saccharomyces cerevisiae) with the acid pretreated flaxseed meal enzymatic hydrolyzate. Maximum ethanol production (0.11 g/l) was achieved from the fermented medium obtained from the acid pretreated flaxseed meal followed by enzymatic hydrolysis by using cellulase enzyme. The structural analysis of bioethanol was also investigated by FTIR.


Sign in / Sign up

Export Citation Format

Share Document