sweet sorghum bagasse
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 37)

H-INDEX

29
(FIVE YEARS 4)

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 310
Author(s):  
Nasib Qureshi ◽  
Badal Saha ◽  
Siqing Liu ◽  
Thaddeus Ezeji ◽  
Nancy Nichols

Butanol was produced commercially from cornstarch and sugarcane molasses (renewable resources) until 1983, when production of these plants was forced to cease because of unfavorable economics of production caused in part by escalating prices of these feedstocks. During recent years, the focus of research has been on the use of economically available agricultural biomass and residues and cutting-edge science and technology to make butanol production a commercially viable process again. In this study, we produced butanol from sweet sorghum bagasse (SSB) by employing high concentrations of SSB solids and integrated process technology through which simultaneous saccharification, fermentation, and recovery (SSFR) were conducted as one unit operation. The concentrated SSB (16–22% dry wt. basis or 160–220 gL−1) was used to reduce reactor size and potentially reduce fixed and operational costs. Indeed, ABE productivity and yield of 0.21 gL−1h−1 and 0.39 were obtained, respectively, when 160 gL−1 SSB (16%, dry wt.) was used in the SSFR process. In nonintegrated systems, use of >90 gL−1 solid loading is improbable and has not been done until this study.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5875-5889
Author(s):  
Nissa Nurfajrin Solihat ◽  
Rika Raniya ◽  
Triyani Fajriutami ◽  
Apri Heri Iswanto ◽  
Widya Fatriasari ◽  
...  

Sweet sorghum bagasse (SSB) is potential feedstock for bioethanol production due to its natural abundance and high cellulose content (> 40%). This work compared the impact of three variables relative to the enzymatic hydrolysis of SSB kraft pulp. The three variables were the biosurfactant from lignin derivative known as amphiphilic lignin derivatives (A-LD), the enzyme loading level, and the hydrolysis time. These variables were optimized by response surface methodology (RSM) with a Box-Behnken design (BBD). The concentration of polyethylene glycol (PEG) 4000 was also optimized to compare it with the A-LD performance in the enzymatic hydrolysis process. After optimization, the A-LD produced a higher reducing sugar yield (RSY) (99.45%) than the PEG 4000. The difference in the predicted versus experimental values of the RSY was less than 4%, which means that the model was highly predictive. The adequacy of the model was confirmed by a regression value close to 1 for the A-LD assisted test. The result implies that the A-LD significantly improved the enzymatic hydrolysis performance to enhance the RSY. Moreover, the BBD is adequate and useful to identify the optimum concentration of surfactant.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Neha Arora ◽  
George P. Philippidis

AbstractSupplementing cultivation media with exogenous carbon sources enhances biomass and lipid production in microalgae. Utilization of renewable organic carbon from agricultural residues can potentially reduce the cost of algae cultivation, while enhancing sustainability. In the present investigation a medium was developed from sweet sorghum bagasse for cultivation of Chlorella under mixotrophic conditions. Using response surface methodology, the optimal values of critical process parameters were determined, namely inoculum cell density (O.D.750) of 0.786, SSB hydrolysate content of the medium 25% v/v, and zero medium salinity, to achieve maximum lipid productivity of 120 mg/L/d. Enhanced biomass (3.44 g/L) and lipid content (40% of dry cell weight) were observed when the alga was cultivated in SSB hydrolysate under mixotrophic conditions compared to heterotrophic and photoautotrophic conditions. A time course investigation revealed distinct physiological responses in terms of cellular growth and biochemical composition of C. vulgaris cultivated in the various trophic modes. The determined carbohydrate and lipid profiles indicate that sugar addition to the cultivation medium boosts neutral lipid synthesis compared to structural lipids, suggesting that carbon flux is channeled towards triacylglycerol synthesis in the cells. Furthermore, the fatty acid profile of lipids extracted from mixotrophically grown cultures contained more saturated and monosaturated fatty acids, which are suitable for biofuel manufacturing. Scale-up studies in a photobioreactor using SSB hydrolysate achieved a biomass concentration of 2.83 g/L consisting of 34% lipids and 26% carbohydrates. These results confirmed that SSB hydrolysate is a promising feedstock for mixotrophic cultivation of Chlorella and synthesis of algal bioproducts and biofuels.


Energy ◽  
2021 ◽  
Vol 214 ◽  
pp. 118799
Author(s):  
Xiajin Ren ◽  
Hongzhen Cai ◽  
Qingfa Zhang ◽  
Donghong Zhang ◽  
Xiaona Lin

Sign in / Sign up

Export Citation Format

Share Document