scholarly journals Characteristics and petroleum geological significance of high-quality source rock in Gufeng Member of Middle Permian Maokou Formation in northern Sichuan Basin, China

Author(s):  
X D Fu ◽  
Y N Chen ◽  
X F Wang ◽  
X J Lv ◽  
W Z Li ◽  
...  
2021 ◽  
Vol 24 (4) ◽  
pp. 419-428
Author(s):  
Bin Li ◽  
Qiqi Li ◽  
Wenhua Mei ◽  
Qingong Zhuo ◽  
Xuesong Lu

Great progress has been made in middle Permian exploration in Northwest Sichuan in recent years, but there are still many questions in understanding the hydrocarbon accumulation conditions. Due to the abundance of source rocks and the multi-term tectonic movements in this area, the hydrocarbon accumulation model is relatively complex, which has become the main problem to be solved urgently in oil and gas exploration. Based on the different tectonic backgrounds of the middle Permian in northwest Sichuan Basin, the thrust nappe belt, the hidden front belt, and the depression belt are taken as the research units to comb and compare the geologic conditions of the middle Permian reservoir. The evaluation of source rocks and the comparison of hydrocarbon sources suggest that the middle Permian hydrocarbon mainly comes from the bottom of the lower Cambrian and middle Permian, and the foreland orogeny promoted the thermal evolution of Paleozoic source rocks in northwest Sichuan to high maturity and over maturity stage. Based on a large number of reservoir physical properties data, the middle Permian reservoir has the characteristics of low porosity and low permeability, among which the thrust nappe belt and the hidden front belt have relatively high porosity and relatively developed fractures. The thick mudstone of Longtan formation constitutes the regional caprock in the study area and the preservation condition is good as a whole. However, the thrusting faults destroyed the sealing ability of the caprock in the nappe thrust belt. Typical reservoir profiles revealed that the trap types were different in the study area. The thrust fault traps are mainly developed in the thrust nappe belt, while the fault anticline traps are developed in the hidden front belt, and the structural lithological traps are developed in the depression belt. The different structural belts in northwest Sichuan have different oil and gas accumulation models, this paper built three hydrocarbon accumulation models by the analysis of reservoir formation conditions. The comprehensive analysis supposed the hidden front belt is close to the lower Cambrian source rock, and the reservoir heterogeneity is weak, faults connected source rock is developed, so it is a favorable oil and gas accumulation area in the middle Permian. 


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2679
Author(s):  
Yuying Zhang ◽  
Shu Jiang ◽  
Zhiliang He ◽  
Yuchao Li ◽  
Dianshi Xiao ◽  
...  

In order to analyze the main factors controlling shale gas accumulation and to predict the potential zone for shale gas exploration, the heterogeneous characteristics of the source rock and reservoir of the Wufeng-Longmaxi Formation in Sichuan Basin were discussed in detail, based on the data of petrology, sedimentology, reservoir physical properties and gas content. On this basis, the effect of coupling between source rock and reservoir on shale gas generation and reservation has been analyzed. The Wufeng-Longmaxi Formation black shale in the Sichuan Basin has been divided into 5 types of lithofacies, i.e., carbonaceous siliceous shale, carbonaceous argillaceous shale, composite shale, silty shale, and argillaceous shale, and 4 types of sedimentary microfacies, i.e., carbonaceous siliceous deep shelf, carbonaceous argillaceous deep shelf, silty argillaceous shallow shelf, and argillaceous shallow shelf. The total organic carbon (TOC) content ranged from 0.5% to 6.0% (mean 2.54%), which gradually decreased vertically from the bottom to the top and was controlled by the oxygen content of the bottom water. Most of the organic matter was sapropel in a high-over thermal maturity. The shale reservoir of Wufeng-Longmaxi Formation was characterized by low porosity and low permeability. Pore types were mainly <10 nm organic pores, especially in the lower member of the Longmaxi Formation. The size of organic pores increased sharply in the upper member of the Longmaxi Formation. The volumes of methane adsorption were between 1.431 m3/t and 3.719 m3/t, and the total gas contents were between 0.44 m3/t and 5.19 m3/t, both of which gradually decreased from the bottom upwards. Shale with a high TOC content in the carbonaceous siliceous/argillaceous deep shelf is considered to have significant potential for hydrocarbon generation and storage capacity for gas preservation, providing favorable conditions of the source rock and reservoir for shale gas.


Sign in / Sign up

Export Citation Format

Share Document