scholarly journals A 220KV Transformer Equipment Vibration Damping Calculation

2021 ◽  
Vol 719 (4) ◽  
pp. 042011
Author(s):  
Xiangyang Fang ◽  
Shiyong Li ◽  
Zihe Zhang ◽  
Guangbin Ji ◽  
Mengxuan Liu
1995 ◽  
Author(s):  
Shoko Yoshikawa ◽  
R. Meyer ◽  
J. Witham ◽  
S. Y. Agadda ◽  
G. Lesieutre

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 219415-219429
Author(s):  
Zhenyang Hao ◽  
Tao Wang ◽  
Xin Cao ◽  
Qiyao Zhang

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1235
Author(s):  
Bidita Salahuddin ◽  
Rahim Mutlu ◽  
Tajwar A. Baigh ◽  
Mohammed N. Alghamdi ◽  
Shazed Aziz

Passive vibration control using polymer composites has been extensively investigated by the engineering community. In this paper, a new kind of vibration dampening polymer composite was developed where oriented nylon 6 fibres were used as the reinforcement, and 3D printed unoriented nylon 6 was used as the matrix material. The shape of the reinforcing fibres was modified to a coiled structure which transformed the fibres into a smart thermoresponsive actuator. This novel self-reinforced composite was of high mechanical robustness and its efficacy was demonstrated as an active dampening system for oscillatory vibration of a heated vibrating system. The blocking force generated within the reinforcing coiled actuator was responsible for dissipating vibration energy and increase the magnitude of the damping factor compared to samples made of non-reinforced nylon 6. Further study shows that the appropriate annealing of coiled actuators provides an enhanced dampening capability to the composite structure. The extent of crystallinity of the reinforcing actuators is found to directly influence the vibration dampening capacity.


Sign in / Sign up

Export Citation Format

Share Document