scholarly journals Self-Reinforced Nylon 6 Composite for Smart Vibration Damping

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1235
Author(s):  
Bidita Salahuddin ◽  
Rahim Mutlu ◽  
Tajwar A. Baigh ◽  
Mohammed N. Alghamdi ◽  
Shazed Aziz

Passive vibration control using polymer composites has been extensively investigated by the engineering community. In this paper, a new kind of vibration dampening polymer composite was developed where oriented nylon 6 fibres were used as the reinforcement, and 3D printed unoriented nylon 6 was used as the matrix material. The shape of the reinforcing fibres was modified to a coiled structure which transformed the fibres into a smart thermoresponsive actuator. This novel self-reinforced composite was of high mechanical robustness and its efficacy was demonstrated as an active dampening system for oscillatory vibration of a heated vibrating system. The blocking force generated within the reinforcing coiled actuator was responsible for dissipating vibration energy and increase the magnitude of the damping factor compared to samples made of non-reinforced nylon 6. Further study shows that the appropriate annealing of coiled actuators provides an enhanced dampening capability to the composite structure. The extent of crystallinity of the reinforcing actuators is found to directly influence the vibration dampening capacity.

2020 ◽  
pp. 002199832096352
Author(s):  
Yachao Wang ◽  
Jing Shi ◽  
Zhihui Liu

Fused filament fabrication (FFF) has been a major 3D printing technique for making thermoplastic products for decades. However, FFF printing for thermoplastic composites with aligned continuous fibers has been reported with limited success for only several years. In this study, we introduce an enhanced FFF-based approach by incorporating nanoparticles to the thermoplastic composites with continuous fibers. Our investigation focuses on the bending properties of FFF-printed fiber reinforced composites with and without nanoparticles. With Nylon 6 (PA 6) being the matrix material, nanocomposite filaments are obtained by adding carbon nanotubes (CNTs), graphene nano platelets (GNPs), or amino (NH2-) functionalized GNPs. Various PA 6 matrix nanocomposite filaments are prepared through mixing and filament extrusion process. The nanocomposite filaments are then 3D printed with or without continuous Kevlar fiber prepreg filaments. For 3D printed pure PA 6, the addition of 1 wt% GNP-NH2 increases the flexural strength and bending modulus by 334% and 315%, respectively. For 3D printed PA 6/Kevlar composite, the addition of 1 wt% GNP-NH2 increases the flexural strength and bending modulus by 195% and 35%, respectively. However, the addition of CNTs or GNPs (up to 1 wt%) is less effective as compared with GNP-NH2. The underlying mechanisms are discussed based on the matrix/fiber interfacial analysis.


Fibers ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 74
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Emmanouil Velidakis ◽  
Mariza Spiridaki ◽  
John D. Kechagias

In this study, nanocomposites were fabricated with polycarbonate (PC) as the matrix material. Cellulose Nanofiber (CNF) at low filler loadings (0.5 wt.% and 1.0 wt.%) was used as the filler. Samples were produced using melt mixing extrusion with the Fused Filament Fabrication (FFF) process. The optimum 3D-printing parameters were experimentally determined and the required specimens for each tested material were manufactured using FFF 3D printing. Tests conducted for mechanical performance were tensile, flexural, impact, and Dynamic Mechanical Analysis (DMA) tests, while images of the side and the fracture area of the specimens were acquired using Scanning Electron Microscopy (SEM), aiming to determine the morphology of the specimens and the fracture mechanism. It was concluded that the filler’s ratio addition of 0.5 wt.% created the optimum performance when compared to pure PC and PC CNF 1.0 wt.% nanocomposite material.


Author(s):  
C.T. Hu ◽  
C.W. Allen

One important problem in determination of precipitate particle size is the effect of preferential thinning during TEM specimen preparation. Figure 1a schematically represents the original polydispersed Ni3Al precipitates in the Ni rich matrix. The three possible type surface profiles of TEM specimens, which result after electrolytic thinning process are illustrated in Figure 1b. c. & d. These various surface profiles could be produced by using different polishing electrolytes and conditions (i.e. temperature and electric current). The matrix-preferential-etching process causes the matrix material to be attacked much more rapidly than the second phase particles. Figure 1b indicated the result. The nonpreferential and precipitate-preferential-etching results are shown in Figures 1c and 1d respectively.


Author(s):  
D. E. Luzzi ◽  
L. D. Marks ◽  
M. I. Buckett

As the HREM becomes increasingly used for the study of dynamic localized phenomena, the development of techniques to recover the desired information from a real image is important. Often, the important features are not strongly scattering in comparison to the matrix material in addition to being masked by statistical and amorphous noise. The desired information will usually involve the accurate knowledge of the position and intensity of the contrast. In order to decipher the desired information from a complex image, cross-correlation (xcf) techniques can be utilized. Unlike other image processing methods which rely on data massaging (e.g. high/low pass filtering or Fourier filtering), the cross-correlation method is a rigorous data reduction technique with no a priori assumptions.We have examined basic cross-correlation procedures using images of discrete gaussian peaks and have developed an iterative procedure to greatly enhance the capabilities of these techniques when the contrast from the peaks overlap.


2020 ◽  
Vol 38 (7A) ◽  
pp. 960-966
Author(s):  
Aseel M. Abdullah ◽  
Hussein Jaber ◽  
Hanaa A. Al-Kaisy

In the present study, the impact strength, flexural modulus, and wear rate of poly methyl methacrylate (PMMA) with eggshell powder (ESP) composites have been investigated. The PMMA used as a matrix material reinforced with ESP at two different states (including untreated eggshell powder (UTESP) and treated eggshell powder (TESP)). Both UTESP and TESP were mixed with PMMA at different weight fractions ranged from (1-5) wt.%. The results revealed that the mechanical properties of the PMMA/ESP composites were enhanced steadily with increasing eggshell contents. The samples with 5 wt.% of UTESP and TESP additions give the maximum values of impact strength, about twice the value of the pure PMMA sample. The calcination process of eggshells powders gives better properties of the PMMA samples compared with the UTESP at the same weight fraction due to improvements in the interface bond between the matrix and particles. The wear characteristics of the PMMA composites decrease by about 57% with increases the weight fraction of TESP up to 5 wt.%. The flexural modulus values are slightly enhanced by increasing of the ESP contents in the PMMA composites.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2509
Author(s):  
Seyed Mohammad Javad Razavi ◽  
Rasoul Esmaeely Neisiany ◽  
Moe Razavi ◽  
Afsaneh Fakhar ◽  
Vigneshwaran Shanmugam ◽  
...  

Functionalized polyacrylonitrile (PAN) nanofibers were used in the present investigation to enhance the fracture behavior of carbon epoxy composite in order to prevent delamination if any crack propagates in the resin rich area. The main intent of this investigation was to analyze the efficiency of PAN nanofiber as a reinforcing agent for the carbon fiber-based epoxy structural composite. The composites were fabricated with stacked unidirectional carbon fibers and the PAN powder was functionalized with glycidyl methacrylate (GMA) and then used as reinforcement. The fabricated composites’ fracture behavior was analyzed through a double cantilever beam test and the energy release rate of the composites was investigated. The neat PAN and functionalized PAN-reinforced samples had an 18% and a 50% increase in fracture energy, respectively, compared to the control composite. In addition, the samples reinforced with functionalized PAN nanofibers had 27% higher interlaminar strength compared to neat PAN-reinforced composite, implying more efficient stress transformation as well as stress distribution from the matrix phase (resin-rich area) to the reinforcement phase (carbon/phase) of the composites. The enhancement of fracture toughness provides an opportunity to alleviate the prevalent issues in laminated composites for structural operations and facilitate their adoption in industries for critical applications.


2019 ◽  
Vol 809 ◽  
pp. 480-486
Author(s):  
Rohit George Sebastian ◽  
Christof Obertscheider ◽  
Ewald Fauster ◽  
Ralf Schledjewski

The growing use of composite materials has generated interest in improving and optimising composite manufacturing processes such as Liquid Composite Moulding (LCM). In LCM, dry preforms are placed in a mould and impregnated with the matrix material. The efficiency of filling the moulds can be improved by using Computational Fluid Dynamics (CFD) filling simulations during the design of the mould. As part of an on-going effort to develop a CFD tool for the simulation of LCM processes, a volume averaged energy balance equation has been derived and implemented in a custom OpenFOAM solver. The energy balance is implemented in a custom OpenFOAM solver with and without the pressure terms for comparison with results from RTM experiments. It is found that the pressure terms do not significantly influence the results for LCM processes.


Sign in / Sign up

Export Citation Format

Share Document