scholarly journals Kinetics of Phosphorus Adsorption in The Calcareous Soils of Kurdistan Region, Iraqi

2021 ◽  
Vol 761 (1) ◽  
pp. 012016
Author(s):  
F. S. Tariq ◽  
C. H. Abdulrahman ◽  
M. S. Rasheed
2012 ◽  
Vol 58 (No. 10) ◽  
pp. 471-476 ◽  
Author(s):  
H.R. Motaghian ◽  
A.R. Hosseinpur

The greenhouse experiment was performed to determine Cu release characteristics in the bulk and the rhizosphere of some calcareous soils using rhizobox. The kinetics of Cu release in the bulk and the rhizosphere soils were determined by successive extraction with diethylenetriaminepentaacetic acid-triethanolamine (DTPA-TEA) and 10 mmol/L citric acid in a period of 1 to 504 h at 25 ± 1°C. The results of kinetics study showed that Cu extracted using DTPA-TEA in the rhizosphere soils was significantly (P < 0.01) lower than the bulk soils, while Cu extracted using citric acid in the rhizosphere soils was significantly (P < 0.01) higher than the bulk soils. The mean of released Cu after 504 h using DTPA-TEA were 8.59 and 7.46 mg/kg in the bulk and the rhizosphere soils, respectively. The mean release of Cu after 504 h using citric acid was 14.73 and 16.05 mg/kg in the bulk and the rhizosphere soils, respectively. Release kinetics of Cu in two extractants conformed fairly well to parabolic diffusion, power function, and first order equations. The results of correlation analysis illustrated that a significant correlation between Cu desorption after 504 h with citric acid and Cu concentration in wheat was found (r = 0.96 and r = 0.90 in the rhizosphere and the bulk soils, respectively, P < 0.01). Therefore, application of 10 mmol/L citric acid extractant would be recommended in the future study on the kinetics of release of Cu in calcareous soils.  


2012 ◽  
Vol 58 (No. 7) ◽  
pp. 328-333 ◽  
Author(s):  
A.R. Hosseinpur ◽  
H.R. Motaghian ◽  
M.H. Salehi

The rate of potassium (K) release from soils is a dynamic process, and it is important to the evaluation of soil K availability to plant. The objectives of this study were to determine K release characteristics and the correlation of these parameters with bean plant indices in surface soils of 15 calcareous soils. The kinetics of K release was determined by successive extraction with 0.01 mol/L CaCl<sub>2</sub> in a period of 2&ndash;2017 h at 25 &plusmn; 1&deg;C. The results showed that the cumulative K&rlm; release ranged from 111 to 411 mg/kg. A plot of cumulative amount of K released showed a discontinuity in slope at 168 h. Thus, two equations were applied to segments of the total reaction time (2 to 168 and 168 to 2017 h). The amounts of K released during 2&ndash;168 and 168&ndash;2017 h ranged from 55 to 299 and 44 to 119 mg/kg, respectively. Release kinetics of K conformed fairly well to parabolic diffusion, simplified Elovich and power function models in two segments. Potassium released after 2&ndash;168 and 168&ndash;2017 h and K release rate constants were significantly correlated (P &lt; 0.05) with bean plant indices, while correlation between K extracted by using 1 mol/L NH<sub>4</sub>OAc (ammonium acetate) and plant indices was not significant. The results of this research showed that information obtained from K release studies in laboratory and kinetics equation parameters can help to estimate the K supplying power of soils. &nbsp;


1992 ◽  
Vol 6 (4) ◽  
pp. 297-310 ◽  
Author(s):  
E. A. Elkhatib ◽  
G. M. Elshebiny ◽  
A. M. Balba

1964 ◽  
Vol 62 (1) ◽  
pp. 93-97 ◽  
Author(s):  
O. Talibudeen ◽  
P. Arambarri

The kinetics of the isotopic exchange of phosphate ions in soils with and without phosphate added in the laboratory were examined in relation to the amount and origin of the CaCO3 they contained. The isotopic exchange index, ‘Pr/Pe’, and the recovery of added phosphate were inversely proportional to carbonate content in soils containing carbonates of similar geological origin; soils from the Lower Lias showed the biggest change in Pr/Pe with carbonate content.In soils from the Cretaceous Chalk, the first-order rate of isotopic exchange of the ‘slow’ phosphate fraction was constant. It increased to a larger but constant value in the soils incubated for 6 months after adding phosphate in the laboratory. This rate constant is therefore specific to the calcium phosphates in a group of soils derived from the same calcareous parent material and with similar phosphate manuring.


Sign in / Sign up

Export Citation Format

Share Document