scholarly journals Influence of silt content on shear strength of sandy soil

2021 ◽  
Vol 768 (1) ◽  
pp. 012088
Author(s):  
Jinbu Li ◽  
Hao Geng ◽  
Guorong Zhang ◽  
Guangri Jin
2016 ◽  
Vol 158 ◽  
pp. 45-50 ◽  
Author(s):  
Marco Mazzuoli ◽  
Rossella Bovolenta ◽  
Riccardo Berardi

2018 ◽  
Vol 20 (2) ◽  
pp. 91 ◽  
Author(s):  
Heriansyah Putra ◽  
Hideaki Yasuhara ◽  
Naoki Kinoshita ◽  
Erizal . ◽  
Tri Sudibyo

Several methods have been established for their various potential applications as soil improvement technique, and recently the application of grouting technique using biological process have been proposed. This study discussed the applicability of enzyme-mediated calcite precipitation (EMCP) in improving the shear strength parameters of sandy soil.  In this study, soil specimens were prepared and treated with the grouting solutions composed of urea, calcium chloride, magnesium sulfate and enzyme of urease. Evolutions in the cohesion and internal friction angle of the improved soil were examined through the direct shear tests. The presence of the precipitated materials, comprising 4.1 percent of the soil mass of the treated sand, generated a cohesion of 53 kPa. However, contrary to the improvement of cohesion, the friction angle is relatively constant. It indicated that the application of the EMCP technique has no significant impact on the friction angle


2016 ◽  
Vol 17 (4) ◽  
pp. 319-324
Author(s):  
Kab-Boo Kim ◽  
Jun-Ho Moon ◽  
Kyo-Young Gu ◽  
Young-Woo Chun ◽  
Young-Uk Kim
Keyword(s):  

2020 ◽  
Vol 857 ◽  
pp. 212-220
Author(s):  
Mohammed Sh. Mahmood ◽  
Waseem H. Al-Baghdadi ◽  
Asaad M. Rabee ◽  
Suhad H. Almahbobi

Accurate prediction of the soil shear strength parameters is essential in the reliable geotechnical design of civil engineering structures. This recent paper investigates the effect of the dry testing condition on the shear strength parameters of the sandy soil using the direct shear apparatus and compared with the saturated condition tests in previous researches on the same soil. The dry soil, usually above the water table, is the principal condition of the Al-Najaf city soil in Iraq. Samples are selected from the site of the University of Kufa, which represents the sandy soil of the city. For reliability purposes, the soil is exposed to different pre-soaking durations (one, two, and four weeks) then air-dried for shear tests. The main results revealed that the angle of internal friction (Φ) tested as a dry sample decreases about -6% up to two-weeks soaking then recovered upon four-week soaking about +6%. Compared to the saturated testing, there are increases in F between 6%-17% from saturated tests. Finally, it is recommended to aware in the selection of testing conditions for calculations of the angle of internal friction.


2019 ◽  
Vol 92 ◽  
pp. 12003
Author(s):  
Leila Maria Coelho de Carvalho ◽  
Michelé Dal Toé Casagrande

Inclusion of natural fibers (sisal, curauá, coco fiber and others) for soil improvement has been the study object in diverse geotechnical areas and it is a topic of growing interest, within the research area of new geotechnical materials. The state of the art in this subject highlights excellent results as soil strength parameters improve and post-cracking strength (toughness) increase. Soil reinforcement technique with fibers is established in the technology of composite materials, this being a combination of two or more materials presenting properties that the component materials do not possess on their own. The aim of this paper is to study the mechanical behaviour of sand-fiber composite by inserting natural curauá fibers into a sandy matrix, with different fiber contents. The fibers were randomly distributed in the soil mass. The experimental program included physical and mechanical characterization of the composites, using full-scale direct shear tests, with samples measuring 30 x 30 cm and 15 cm high. Direct shear tests were carried out using fibers with 25 mm length and 0.5 and 0.75% fiber content (relative to the soil dry weight). The specimens also presented a relative density of 50% and moisture content of 10%. It was sought to establish a pattern behaviour so that the addition of curauá fiber influence can be explained, thus, comparing with the sandy soil shear strength parameters. Inclusion of natural curauá fibers as soil reinforcement presented satisfactory results, as an increase in the soil shear strength parameters was observed when compared with sandy soil results.


2019 ◽  
Vol 197 ◽  
pp. 271-279 ◽  
Author(s):  
Chunhui Chen ◽  
Li Wu ◽  
Michal Perdjon ◽  
Xiaoyang Huang ◽  
Yaxiong Peng

Sign in / Sign up

Export Citation Format

Share Document