scholarly journals Optimal control model and strategy of flexible load participating in distribution network

2021 ◽  
Vol 791 (1) ◽  
pp. 012089
Author(s):  
LiBing Liu ◽  
ChaoLiang Sun ◽  
YongGuang Liu ◽  
ChenKai Wu ◽  
Jin Li ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Beibei Wang ◽  
Xiaoqing Hu ◽  
Peifeng Shen ◽  
Wenlu Ji ◽  
Yang Cao ◽  
...  

There are many uncertain factors in the modern distribution network, including the access of renewable energy sources and the heavy load level. The existence of these factors has brought challenges to the stability of the power distribution network, as well as increasing the risk of exceeding transmission capacity of distribution lines. The appearance of flexible load control technology provides a new idea to solve the above problems. Air conditioners (ACs) account for a great proportion of all loads. In this paper, the model of dispatching AC loads in the regional power grid is constructed, and the direct load control (DLC) method is adopted to reduce the load of ACs. An improved tabu search technique is proposed to solve the problem of network dispatch in distribution systems in order to reduce the resistive line losses and to eliminate the transmission congestion in lines under normal operating conditions. The optimal node solution is obtained to find the best location and reduction capacity of ACs for load control. To demonstrate the validity and effectiveness of the proposed method, a test system is studied. The numerical results are also given in this article, which reveal that the proposed method is promising.


2011 ◽  
Vol 467-469 ◽  
pp. 1066-1071
Author(s):  
Zhong Xin Li ◽  
Ji Wei Guo ◽  
Ming Hong Gao ◽  
Hong Jiang

Taking the full-vehicle eight-freedom dynamic model of a type of bus as the simulation object , a new optimal control method is introduced. This method is based on the genetic algorithm, and the full-vehicle optimal control model is built in the MatLab. The weight matrix of the optimal control is optimized through the genetic algorithm; then the outcome is compared with the artificially-set optimal control simulation, which shows that the genetic-algorithm based optimal control presents better performance, thereby creating a smoother ride and improving the steering stability of the vehicle.


2018 ◽  
Vol 11 (06) ◽  
pp. 1850090 ◽  
Author(s):  
S. Athithan ◽  
Mini Ghosh ◽  
Xue-Zhi Li

The problem of corruption is of serious concern in all the nations, more so in the developing countries. This paper presents the formulation of a corruption control model and its analysis using the theory of differential equations. We found the equilibria of the model and stability of these equilibria are discussed in detail. The threshold quantity [Formula: see text] which has a similar implication here as in the epidemiological modeling is obtained for the present model. The corruption free equilibrium is found to be stable when [Formula: see text] is less than [Formula: see text] and unstable for [Formula: see text]. The endemic equilibrium which signifies the presence of corrupted individuals in the society exists only when [Formula: see text]. This equilibrium point is locally asymptotically stable whenever it exists. We perform extensive numerical simulations to support the analytical findings. Furthermore, we extend the model to include optimal control and the optimal control profile is obtained to get the maximum control within a stipulated period of time. Our presented results show that the level of corruption in the society can be reduced if corruption control efforts through media/punishments etc. are increased and put in place.


Sign in / Sign up

Export Citation Format

Share Document